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Thermal Cycling of Carbonfiber-reinforced Resin
Systems

H. W. BERGMANN and W. HARTUNG
German Aerospace Research Establishment, 33 Braunschweig, FRG

ABSTRACT

The effects of thermal cycling between +100 °C and -160°C on C-fiber
reinforced resin systems have been investigated. The associated damage
manifests itself largely in the form of matrix cracks which affect
strengths and stiffnesses as well as thermal expansions. Initial and
residual properties after various cycle numbers were established and
compared. In view of the high cost of realistic space simulations, the
replacement of radiative cooling in vacuum by gaseous nitrogen at atmos-
pheric pressure and the feasibility of accelerated cooling rates were
studied. The investigations are continuing with emphasis on high-
performance resin systems for the HERMES program.

KEYWORDS

Thermal cycling, carbonfiber-reinforced resins, space simulations, matrix
cracking, property degradation.

INTRODUCTION

Space structures operating 1in geostationary or low earth orbits may
experience thousands of thermal cycles with high amplitudes. Under such
conditions, carbonfiber-reinforced resin systems are affected because of
discrepant thermal expansions of fibers and resins. Especially in high-
performance systems, the substantial difference between their curing and
their Tlower service temperature can induce thermal strains of such
magnitude that matrix cracks, interfacial delaminations and degraded
fiber/matrix interfaces may result and threaten their thermal fatigue
performance.

In a series of tests conducted previously and reported in Ref. 1, the

effects of up to 3500 thermal cycles between +100 °C and -160 °C were
investigated by comparing initial and residual strengths and stiffnesses of
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parallel-sided * 45°-laminates made from various epoxy resins reinforced
with T300 fibers. In these tests the space environment was simulated in a
space-rated facility in which, under vacuum, the heating was effected by
infrared radiation and the cooling by radiation from an Np- filled source.

In connection with the European space program, the issue of thermal cycling
has recently been revived. The Institute for Structural Mechanics of the
German Aerospace Research Establishment (DLR), under contract by §he
European Space Agency (ESA), has evaluated the response to thermal cycling
of a new set of materials as well as the feasibility of reducing the cost
of realistic space simulations.

SCOPE OF TEST PROGRAM

The investigations included the five material systems identified in Figure
1. Consistent with the previous test efforts, the testing was confined to
parallel-sided * 45°-laminates of 1 mm thickness and 60 % fiber content.
From each of the five materials, 195x65 mm large coupons were prepared and
grouped into two sets which were thermally cycled under different condi-
tions, and one set which served as an uncycled reference basis. Addition-
ally, laminates were prepared for the determination of their thermal
properties.

The investigation of simplified test conditions centered on three
questions:

1) Are the mechanical properties of the laminates affected by the absence
or presence of a vacuum, or by the replacement of radiative cooling by
convective cooling with gaseous nitrogen?

2) Are significant differences in the damage patterns introduced by
increasing the rate of the cooling cycles?

3) Do matrix cracking and fiber debonding cease after relatively few
cycles because of the associated stress relief?

In order to provide answers to these questions, the thermal cycling tests
were conducted in vacuum with radiation cooling as well as at atmospheric
pressure in gaseous nitrogen in a standard thermal chamber. In both cases
the majority of the test coupons was exposed to 1500 cycles between +100 °C
and -160 °C. The temperature vs. time relationships of the different
cycling modes are given in Figure 2. Prior to the beginning of thermal
cycling and after 10, 50, 150, 400, 800 and 1500 cycles the test coupons
were radiographically examined and then subjected to bending tests in order
to determine their initial and residual stiffnesses. To gquard against
damage of the coupons, their acoustic emissions were recorded and the
maximum strains in the surface plies limited to 0.2 %.

Upon completion of various cycle numbers, test coupons of each set were
dissected to provide specimens for residual tension tests, thermal
expansion measurements and microscopic investigations.

The thermal cycling tests in gaseous nitrogen were monitored by in-situ

acoustic emission measurements to provide a continuous record of damage
initiation and progression.
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STRENGTH AND STIFFNESS DEGRADATIONS

Test results of specimens cycled in vacuum

A1l tests in the space-rated facility were conducted with cycle durations
of ca. 60 min. Figure 3 shows the decline of the residual strengths.of the
five material systems after 400 cycles. The severity of the degradat1qns is
seen to depend on the curing temperatures of the resin system - it is
negligible for the 120 °C Code 92 material and quite substantial for the
210 °C 65 FWR bismaleimide which, on account of its higher degree of
cross-linking, is also more brittle. The test data in both figures are
similar to those obtained in a previous test program (Ref. 1), confirming
the fact that the rate of crack development is high during the first few
cycles and then declines at a diminishing rate without ceasing completely
even after 1500 cycles. The nature of the test facility precluded the
operation of acoustic emission equipment.

Test results of specimens cycled in gaseous nitrogen

In order to obtain comparable test data, one set of specimens was tested
under conditions as identical as possible to those in vacuum. A small
change in the cycle duration was necessitated by the different cooling
approach but, as shown in Figure 2, the cooling rates in the critical
temperature ranges could be kept similar. The majority of the tests was
monitored by acoustic emission evaluations.

With respect to both strength and stiffness degradation, very similar
results were obtained in both test facilities. As an example, the test data
depicting the measured residual properties after 400 thermal cycles are
shown in Figure 4 for comparison with Figure 3. While the strength values
are quite coincident, the stiffness data displayed modest but inconsistent
differences. Considering that the stiffness tests were conducted under Tow
Toads and therefore reflect test deviations disproportionally, it was
concluded that the evaluation of mechanical property degradations due to
thermal cycling does not require the use of space-rated facilities.

On this premise it was considered permissible to include data from both
test facilities in the investigation of the effect of different cooling
rates, i.e., to compare the degradations occurring under fast cycling in N»
(cooling rate 32.5 k/min) to those of slow cycling in vacuum (cooling rate
4.7 k/min). In general, the losses in strength and stiffness tended to be
somewhat higher after fast cycling. This observation was supported by a
study of the emission rates of acoustic energy recorded during both cycling
modes. It should be understood that acoustic energy counts represent
energies released during the development of a crack, a debond or the
rupture of a fiber. The integral of all acoustic energy counts, therefore,
is an indicator of the damage state accumulated at a certain number of
cycles. These data, in support of the mechanical test data, point to the
probability that the damage development does not cease after a relatively
few cycles but continues steadily even at high cycle numbers although at
diminishing rates.
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DAMAGE DEVELOPMENT

The dominant failure mechanism in thermally cycled Taminates is the
development of matrix cracks during the cooling phases. Their numper and
distribution through the thickness of the test coupons were determ1ngd by
means of enlarged x-ray records and by microscopic inspection of ppl1shed
cross-sections. For the purpose of comparison, a mean crack density was
introduced defined as the total number of cracks detected in all plies of.a
laminate of unit length divided by the number of plies. Consistent again
with previous test results, distinct effects of different cycling speeds on
the damage pattern were noted, the rate of crack development being slower
in the longer cooling phases with correspondingly lower temperature
gradients as shown, typically, in Figure 5.

In all cases the cracking commenced in the surface plies and, depending on
the characteristics of the resin system, under continuing cycling extended
to various degrees into the intermediate plies. This sequential nature of
crack formation is probably due to temperature gradients in the laminate
thickness direction.

DEGRADATION OF THERMAL STABILITY

The need for thermal stability is an essential requirement for many space
applications. The question whether and to what extent the thermal expan-
sions are affected by thermal cycling is, therefore, of considerable
importance.

Dilatometrical thermal expansion measurements were performed on both
unidirectional and 45°-laminates. The test specimens were 45 mm long and
9.5 mm wide with thicknesses of 3 mm and 1 mm for the unidirectional and
cross-plied laminates, respectively. No effects due to thermal cycling were
noted in the Jlongitudinal or transverse direction of the uniaxial
specimens, while the crack formation in the cross-plied Taminates tended to
reduce the thermal expansions as shown, for example, in Figure 6. As
expected, the reductions of the thermal expansions are in correspondence
with the density of the crack patterns.

SUPPLEMENTARY TEST PROGRAM

The specific needs of the "HERMES" program, where the use of carbon-
fiber-reinforced bismaleimide and poloyimide resin systems with curing
temperatures of 210 °C and 250 °C is under consideration to reduce the
weight of thermal insulation, has recently added another dimension to the
issue of thermal cycling. Although in this case the lower service
temperature has been tentatively defined as -120 °C and the ductility of
newly developed resin systems may be expected to be higher, the reason for
concern is obvious. It was reinforced by the acoustic energy records in
Figure 7 which indicate that matric cracking in a 65 FWR Compimide
commences already at approximately -60 °C. New tests with candidate
materials for primary structural components for "HERMES" are currently in
preparation and will be reported upon completion. First indications point
to matr:x cracking to commence in similar ranges as in the 65 FWR Compimide
material.
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SUMMARY

Thermal cycling tests have been performed with different material systems
with temperature extremes of +100 °C and -160 °C. In carbon-fiber-
reinforced epoxy resins strength and stiffness losses of up to 10 % were
noted, whereas a bismaleimide resin suffered 20 % degradation. In all
cases, the formation of matrix cracks was observed, the severity dependent
on the curing temperature of the resins.

Identical tests were conducted in a space-rated facility under vacuum and
with radiative cooling, and in a standard chamber under atmospheric pressure
and with convective cooling by gaseous nitrogen. No significant differences
were noted in regard to the strength and stiffness degradations of the test
specimens. Substantial variations in the cooling rates lead to only
moderate effects on the mechanical properties. The major part of the damage
manifested itself in the form of matrix cracks during the early cycles with
additional damage formation still detectable after 1500 cycles.

With respect to cooling rates, moderate differences were noted between fast
and slow cooling, the development of damage being more severe at high
cooling rates.

While the majority of the observed damage occurred in the early stages of
cycling, some degradation was noted be take place even after 1500 cycles.

The development of cracks affects the thermal expansion coefficients in the
sense that with increasing crack densities the expansion coefficients are
lowered.

It must be expected that in the bismaleimide and polyimide systems under
consideration for the HERMES vehicle, matrix cracks will occur before
reaching the -120 °C lower temperature limit. [n laminates of substantial
thickness, thermal gradients in the thickness direction will accelerate the
formation of cracks in the outside plies. These cracks are not necessarily
detrimental to the safety of the vehicle but their existence cannot be
ignored and their consequences should be explored further.

Of concern also is the potential weakening of the fiber/matrix-interface
due to thermal cycling which, as observed in Ref. 1, may lead to a change
from cohesive to adhesive matrix failure modes.
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Material Conpimide Fibredux LY 556/ Hercules Carboform SO
Designation 65 FWR-IM6 914 C-TS-5 HT976-IM6 4502-IM6 60/92151
Intermediate Intermediate | Intermediate | High Modulus
Fibres Mo-12k | 008K 1 Mg 1ak IM6- 12K GY 70SE
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