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PREFACE

This volume contains contributions from the speakers at the NATO
Advanced Research Workshop on '"3D Structure and Dynamics of RNA", which
was held in Renesse, The Netherlands, 21 - 24 August, 1985.

* 1Two major developments have determined the progress of nucleic acid
research during the last decade. First, manipulation of genetic material
by recombinant DNA methodology has enabled detailed studies of the function
of nucleic acids in vivo. Second, the use of powerful physical methods,
such as X-ray diffraction and nuclear magnetic resonance spectroscopy,
in the study of biomacromolecules has provided information regarding the
Structure and the dynamics of nucleic acids. Both developments were enabled
by the advance of synthetic methods that allow preparation of nucleic acid
molecules of required sequence and length.

The basic understanding of nucleic acid function will ultimately
depend on a close collaboration between molecular biologists and biophy-
sicists. In the case of RNA, the ground rules for the formation of secondary
structure have been derived from physical studies of oligoribonucleotides.
Powerfull spectroscopic techniques have revealed more details of RNA
structure including novel conformations (e.g. left-handed Z-RNA).

A wealth of information has been obtained by studying the relatively
small transfer RNA molecules. A few of these RNAs have been crystallized,
enabling determination of their three-dimensional structure. It has become
apparent that "non-classical" basepairing between distal nucleotides gives
rise to tertiary interactions, determining the overall shape of the molecule,
Independent evidence for the 3D folding stems from high resolution proton
NMR studies of dissolved molecules. Newly started molecular dynamics
calculations promise to provide us with a detailed knowledge of the atomic
motions in these molecules. Details of the structures and of the interac-~
tion with ligands are also derived from data obtained by a variety of
spectroscopic techniques. When these are combined with results of (bioc)-
chemical analysis it is possible to arrive at a clear picture of structure
and function of this class of RNA molecules.

In most cells the bulk of RNA is present in ribosomes. The three
classes of ribosomal RNA, 55 RNA, 16S RNA and 23S RNA have been studied
extensively, although not in such detail as transfer RNA, For all three
classes "consensus' secondary structures have been derived These are
primarily based on phylogenetic data, but are supported by experiments
using (bio)-chemical approaches. Unfortunately, it has as yet not been
possible to crystallize a ribosomal RNA (or part of it) and the molecules
are too large to be studied by NMR at its current state of the art.
However, some progress has been made with fragments of ribosomal RNA.
Similarly, through the use of a variety of techniques, including recombi-
nant DNA methods, functional areas in ribosomal RNAs have been mapped.



Important information has also been obtained regarding the folding
of viral RNA. Here, some novel folding principles have been introduced
which might also play a role in other RNA molecules.

A recent finding that RNA molecules, like enzymes, have catalytic
properties, has attracted much attention. The auto-catalytic selfsplicing
of RNA appears to depend on a precise folding pattern of the RNA near
the splice junction. :

NATO Scientific Affairs Division is gratefully acknowledged for
granting an award that made the organization of the workshop possible.
Generous financial support was obtained from the Royal Netherlands
Academy of Arts and Sciences. Contributions were also made by Amersham
Nederland BV, Beckmann Instruments Nederland BV, Boehringer Mannheim BV,
Bruker Spectrospin NV, Gibco-BRL, Gist-Brocades BV, Salm & Kipp and
Westburg BV (Anglian Biotechnology).

Finally it should be mentioned that the success of the meeting and
the high scientific standard of this volume are the result of the enthou-
siastic co-operation of the participants. There is clearly a need for
meetings devoted to RNA at regular intervals in the future.

P.H. van Knippenberg
C.W. Hilbers
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IMPROVED PARAMETERS FOR PREDICTION OF RNA SECONDARY STRUCTURE

AND INSIGHTS INTO WHY RNA FORMS DOUBLE HELIXES

D. H. Turner,! S. M. Freier,! N, Sugimoto,!
D. R. Hickey!, J. A, Jaeger,® A. Sinclair,? D. Alkema,?
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ABSTRACT

Thermodynamic parameters for double helix formation have been
measured for a large number of oligoribonucleotides. These data have
been analyzed to provide free energy changes assoclated with base
pairs, dangling ends, and base mismatches. The results suggest base
atacking and base pairing are important determinants of RNA stability,
but that hydrophobic bonding is not. The l{mproved thermodynamic
parameters are applied to predict secondary structures for the self
splicing intervening sequence from the ribosomal RNA precursor of
Tetrahymena thermophila. ’

INTRODUCTION

Knowledge of the forces directing nucleic acid chemistry is
important for understanding the structure and dynamics of RNA. There
{s considerable controversy, however, over the relative cong.*butions
of interactions such as hydrophobic bonding, base stacking, and
hydrogen bonding. Empirical measures for the magnitudes of these
contributions can be obtained from optical studies of double helix



Fig. 1.

A. Proteins

ATy(°C)

op L
- oM ;
- 10k
-so)-
~50F RNAse A, RNAse A, Lysozyme,

pH3 pH 4.7 pHS

AT0) B. Nucleic Acids

[ 2xi078 ™ 2x10°% M
AUp (48-4C)y

Poly A Poly ¢

Cosolvent-induced changes in T_ relative to water. A.
Proteins: ribonuclease A (RNASe A) at pH 3 (Brandts and
Hunt, 1967; Gekko and Timasheff, 1981b) and pH 4.7 (Schrier
and Scheraga, 1962; Schrier et al., 1965; Gerlsma and Stuur,
1974), lysozyme at pH 3 (Parodi et al., 1973; Back et al.,
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formation by oligonucleotides. Absorbance versus temperature melting
curves are analyzed to provide thermodynamic parameters for the single
strand to double helix transition. Such studies also provide
parameters for improving predictions of RNA structure from sequence.
In this paper, we review the results of several such studies.

HYDRCPHOBIC BONDING

One possible source of free energy driving helix formation by RNA
is classical hydrophobic bonding. Many studies indicate hydrophobic
bonding is important for protein folding (Brandts and Hunt, 1967;
Kauzmann, 1959; Cantor and Schimmel, 1980), and it has been suggested
that it is also important for folding of nucleic acids, One
indication that hydrophobic bonding stabilizes the folded form of
proteins i{s the decrease in protein melting temperature indueed by
addition of aliphatic alcohols, Typical results are shown in Figure
1. Presumably, this effect is due to the favorable interactions
between the hydrophobic groups of the alcohols and proteins. The
observation that propanol is a stronger denaturant than ethanol (see
Figure 1) is consistent with this interpretation because the longer
aliphatic chain of propanol makes it more hydrophobic. Nucleic acids,
however, do not follow this trend. As illustrated in Figure 1,
ethanol and propancl have similar effects on the coil to helix
transition for double stranded A,U,p and (dG-dC),, and for single
stranded poly (cytidylic acid). Glycerol is a cosolvent that enhances
hydrophobic bonding (Gekko and Timasheff, 1981a,b). There is an
unfavorable interaction between CHOH and CH, groups (Okamoto et
al., 1978) that is presumably responsible for this effect. Thus
glycerol raises the melting temperatures of proteins, as illustrated
in Figure 1. The opposite effect is observed for the coil to helix
transition in both single and double strand nucleic acids (see Figure
t). Thus solvent effects on stability differ for proteins and nucleic
aclids, This should not be surprising since the chemical structures of
proteins and nucleic acids are quite different. The interiors of
proteins contain many non-polar aliphatic groups, while the buried
parts of nucleic acids are largely aromatic and polar. Recent
computer simulations of solute-solvent interactions indicate water-
..water structure increases around non-polar solutes (Geiger et al.,
1979; Pangali et al., 1979; Swaminathan et al., 1978) but not around
benzene (Linse et al., 1984), and that hydrophobic bonding is not
responsible for stacking of purines (Langlet et al., 1980).

STACKING

An empirical measure of the free energy change associated with
stacking can be obtained by comparing the stabilities for completely
complementary double helixes and double helixes containing terminal
unpaired nucleotides (dangling ends) (Petersheim and Turner, 1983a;
Freier et al., 1983a, 1985a, 1986a). For example, half the difference
of free energy changes for helix formation by CCGG and CCGGA provides
the stacking free energy change fcr a 3' A on a GC base pair. Many
such free energy increments have been measured using CCGG, GGCC, and
GCGC as core double helixes (Petersheim and Turner, 1983a; Freier et
al., 1983, 1985a, 1986a). These are listed in Table 1 for 37°C, and
several are shown Iin Figure 2. Some trends are apparent. Free energy
increments for 3' dangling ends are much larger than for 5' dangling
ends. In fact, in 1 M NaCl, a 5' dangling end adds essentially the
same stability increment as a 5' phosphate. This suggests the base of
a 5' dangling nucleotide interacts little with the adjacent base pair.
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Table 1.

a

Stability Increments for Adding Terminal Phosphates,

Dangling Ends, Terminal Base Pairs agd Terminal Mismatches
to GGCC, CCGG, and GCGC in 1 M NaCl.

added terminus

terminal phosphates:

5' phosphate (5'p}
3' phosphate (3'p)

5' dangling

5'Ap
5'Cp
5'Gp
5'Up

+ o+ o+ o+

wwww
T U U o

3' dangling

3'pAp
3'pCp
3'pC

3'pGp
3'pUp

Watson—-Crick pairs:

5'Ap +
5'Cp +
5'Gp +
5'Up +
5'Ap +

GU pairs:

5'Up +
5'Gp ¢+
5'Gp +

Mismatches

5'Ap
5'Ap
5'Ap
5'Gp
5'Gp
5'Up

+ o+ o+ 4+

ends:
1]
1
1]
*

ends:

3'pUp
3'pGp
3'pCp
3'pAp
3'pU

531pGp
3'pUp
3'pU

3'pAp
3'pCp
3'pGp
3'pAp
3'pGp
3'pU

-AAG°(37°C), kcal/mol
core helix: GGCC CCGG GCGC
0.2 0.3
-0.1 ~0.2
0.2 0.5
0.2 0.3
0.2 0.0
0.0 0.1
1.8 1.1 1.7
0.8 0.4 0.8
0.9
1.7 1.3 1.5
1.2 0.6 1.1
1.6 1.9
2.3 2.2
3.4 3.3
1.6 1.6
1.5 1.7
1.5 1.4
2.3
1.9
1.1
1.1
1.6
1.3
1.5
1.2

AAGe(37°C) is half the difference between the AG°(37°C) of helix

formation for the molecule containing the core helix plus the added
termini and the AG°(37°C) of helix formation for the tetramer core.
For example, for the dangling end, 3'pAp on a CCGG core: AAG®(37°C)

= 0.5 [AG°{CCGGA) - AG°(CCGG)].
Turner, 1983a; Freler et al,,

al., 1986a,d,

1983a; Freier et al.,

Results are from Petersheim and

1985a; Freier et



NMR chemical shifts as a function of temperature for ACCGGp are
consistent with this interpretation (Petersheim and Turner, 1983b).
This lack of stacking is also consistent with standard A-form RNA
geometry (Freier et al., 1985a). For 3' dangling ends, the order of
additional stability is A,G>U>C, and they add more stability when
adjacent to a C than to a G. The range of free energy Increments is
-0.4 to -1.8 kecal/mole for 3' dangling ends. For full base pairs,
this range is -0.9 to —=3.3 kcal/mole at 37°C (see Tables 1 and 3),
indicating stacking is an important determinant of nucleic acid
stability.

PAIRING

We define pairing as the interactions between nuclectides within a
base pair. Quantum mechanical calculations indicate hydrogen bonding
dominates these interactions (Pullman and Pullman, 1968; 1969). An
empirical measure of the free energy increment for pairing is the
difference between the free energy change for adding a base pair to a
helix and the sum of the free energy changes for adding the
corresponding dangling ends (Petersheim and Turner, 1683; Freier et
al., 1985a, 1986a). Free energy changes for terminal base pairs and
dangling ends are listed in Table 1, and presented as bar graphs in
Figure 2. Presumably, stacking of dangling ends provides an upper
limit for the stacking contribution to base pair formation since a
dangling end has more freedom to adopt an optimum stacking geometry.
It is even possible that stacking interactions interfere with base
pair formation if they must be disrupted to allow a geometry
appropriate for hydrogen bonding. In seven of the nine cases shown in
Figure 2, the sums of the free energy increments from 5' and 3'
dangling ends are more than half the increments for adding the
corresponding base pairs. In two cases, GCCGGCp and GGCGCCp, the sums
of the dangling ends are less than one quarter of the increment for
the full base pair. This indicates pairing is also an important
determinant of nucleic acid stability. In making this comparison, it
should be realized that the free energy changes assocliated with 3'
dangling end stacking and base pair formation contain contributions
from unfavorable configurational entropy. In principle, this term
must be factored out to derive measures of the pure attractive forces
driving base pair formation. Unfortunately, there is currently
uncertainty about the magnitude of the configurational entropy.

PREDICTING RNA STRUCTURE

Current computer algorithms (Zuker and Stiegler, 1981; Jacobson et
al., 1984; Nussinov et al., 1982; Pipas and McMahon, 1975; Salser,
1977, Papanicolaou et al., 1984) for predicting RNA secondary
structure from sequence are based on a nearest neighbor model (Tinoco
et al., 1971; Gralla and Crothers, 1973). Such a model is reasonable
if stacking and hydrogen bonding drive helix formation, since both
involve short range forces. The results in Table 1 provide some
direct evidence supporting the nearest neighbor model. Specifically,
the free energy increment$ for adding 3' dangling ends, a CG ar AU
base palir to GGCC are the same, within experimental error, as for
adding each to GCGC. .

Another test of the nearest neighbor model is shown in Table 2
which lists melting temperatures and free energy changes measured for
nelix formation by pairs of oligomers that have the same nearest
neighbors, but different sequences (Freier et al., 1986b). The



Table 2. Thermodynamic Parameters of Helix Formation for
Oligonucleotides with Identical Nearest Neighbors, but
Different Sequences

~AG®(37°C) T _(°C)
0ligomer (kcal/mol) (at 1 x 107"M)
AGAUAUCU 6.58 1.4
AUCUAGAU 7.20 45,1
AACUAGUU 7.17 45,7
AGUUAACU 6.36 1.1
ACUUAAGU 6.16 40,2
GAACGUUC 9.30 52.3
GUUCGAAC 8.76 50. 4
UCUAUAGA 6.96 43.6
UAGAUCUA 7.25 45.3
GUCGAC 7.09 45,4
GACGUC 7.35 46.2
GCCGGCp: 11.24 67.2
GGCGCCp 11.33 65.2
ACUAUAGU 6.98 440
AGUAUACU 6.80 43.7

8 parameters derived from plots of reciprocal melting temperature

b (T ~!') vs. log(concentration). Data from Freier et al., 1986b.

o pafa from Freier et al., 1985a. .
Data from Freler et al., 1986a.

Table 3. Free Energy Parameters for Nearegtb
Interactions in 1M NaCl at 37¢C.”°

Neighbor

3' Nucleotide

5' Nucleotide A C G U
A ~0.9 ~2.2 -1.7 -1.0
C -1.9 -3.0 -2.2 -1.7
G -2.2 -3.3 -3.0 -2.2
U ~1.2 ~2.2 -1.9 -0.9

3 Free energy parameters obtained by a multiple linear regression to
thermodynamic parameters for single strand to double helix
equilibria for 36 oligonucleotides. For each oligonucleotide, _
thermodynamic parameters were derived from plots of inverse melting
temperature vs. log(concentration). Values of AH° and AS°® from
these plots were within 15% of the AH° and AS® derived by averaging
fits of the melting curves to a two-state model.

Sources of oligonucleotide data were: Petersheim and Turner, 1983a;
Nelson et al., 1981; Freier et al., 1983a, 1985a,b, 1986a,b,c;
Groebe, D. R., Uhlenbeck, O. C., Freier, S. M., and Turner, D. H.,
unpublished experiments. *



melting temperatures of the pairs differ from 0.3 to 5.5°C with an
average difference of 2.4°C, corresponding to about 1% on the Kelvin
scale. The free energy differences range from 0.8 to 15.2% with an
average difference of 6%. These results indicate the nearest neighbor
model should provide reasonable predictions for helix stabilities,

In order to make the best possible predictions of helix stability
with the nearest neighbor model, it is necessary to measure free
energy parameters for all ten nearest neighbor interactions (Borer et
al., 1974). This has not been previously possible due to limitations
in methods for making RNA. Recent advances in synthetic methods have
eliminated this constraint (Kierzek et al., 1986; England and Néilson,
1976; Uhlenbeck and Gumport, 1982; Romaniuk and Uhlenbeck, 1983;
Beckett and Uhlenbeck, 1984). Table 3 lists free energy changes at
37°C for all ten nearest neighbors as derived from melting studies on
36 oligonucleotides (Freier et al., 1986c).

The largest differences between these parameters and those used
most often for prediction of RNA secondary structure (Borer et al.,
1974) are for nearest neighbors containing two GC base pairs (Freier
et al., 1985b). The values of AG°{37°C) for CG, GG, and GC stacks are
-2.2, =3.0, and -3.3 kcal/mole, respectively. If helix stability was
determined only by hydrogen or hydrophobic bonding, then AG°(37°C)
should be the same for all these stacks. Thus these values also
provide additional evidence for the importance of stacking.

In addition to standard AU and GC base pairs, GU pairs are known
to occur in RNA. We have measured the thermodynamic parameters for
several oligomers containing GU base pairs in order to improve GU
parameters. Results from four oligomers containing terminal GU pairs
are listed in Table 1. Evidently, a terminal GU pailr is essentially
equivalent to a terminal AU pair. This confirms previous suggestions
based on the binding of the codons AUG and GUG to formylmethionine
tRNA (Uhlenbeck et al., 1970; Gralla and Crothers, 1973). Preliminary
measurements have also been made on oligonucleotides containing
internal GU base pairs. Together with previously published data
(Uhlenbeck et al., 1971; Gralla and Crothers, 1973), the results
suggest an internal nearest neighbor stack containing GU is roughly
0.1 to 0.4 kcal/mole less stable than the corresponding AU stack (N.
Sugimoto, S. M. Freier and D. H. Turner, unpublished experiments).

The thermodynamic parameters for dangling end stacking suggest
that terminal mismatches other than GU should also significantly
stabilize helixes. Stability increments for six such mismatches are
listed in Table 1 (Hickey and Turner, 1985b; Freier et al., 1986d).
They range from -1.1 to -1.6 kcal/mole. In the nearest neighbor
model, there are a total of 48 different terminal mismatches. Thus it
would be useful to have rules for approximating the free energy
increments of terminal mismatches without directly measuring each one.
One possible approximation is to sum the increments from the
corresponding 3' and 5' dangling ends. Figure 3 shows that this is
adequate for pyrimidine-pyrimidine and pyrimidine-purine mismatches,
but not for A+<A mismatches. This might be due to geometrical
considerations. Purine-purine mismatches are better approximated by
the stability increment of the appropriate 3' dangling end made more
favorable by 0.2 kcal/mole for the effect of the 5' phosphate.

To determine the effect of revised nearest neighbor parameters on
prediction of RNA structure, the parameters in Table 3 were used with
the computer program of Zuker and Stiegler (1981) to predict the
structure of the self splicing intervening sequence from the RNA



