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Preface

The »2003" International Conference on Numerical Optimization and Nwner-
ical Linear Algebra™ was held at Guilin from Oct 7-10. 2003. The conference
was organized by Laboratory of Scientiic and Engineering Computing. Institute
of Computational Mathematics and Scientific/FEngineering Computing. Academy
of Mathematices and Systems Science of the Chinese Academny of Sciences. and
Guangxi University.

This conference was the 4th of the biennial conferences. after the first one in
Qingdao(1997). 1the second one in Nanjing(1999) and the third in Dunhnang(2003).
About 80 participants attended this conference. Tt is iy great pleasure and hon-
our that Professor ML.J.D. Powell (who supervised my Ph.D. about twenty vears
ago). FRS. of University of Cambridge. came and gave the conference’s first invited
lecture. T am also very glad that we had invited speakers such as Binsheng He.
Masao Fukushima. Xingsi Li. Qin Ni. Linqun Qi M. Ravdan. E.W. Sachs. Wenvu
Sun, T Terlakyv, Chnanlong Wang, Zengxi Weio Naihna Xin. Shufang Xu. Jason
Zhang, Liansheng Zhang. Shao-liang Zhang. and Zhenvue Zhane. who reported
the recent advances in numerical optimization and numerical linear algebra at the
conference. Apart from the academic talks at the conference. there were also infor-
mal discussions on the developments of optimization and munerical linear algebra.
particularly about promotions of international exchanges and collaborations in
these two arcas. The conference organized a one-day sightseeing tour along the
beautiful Li River. which was enjoved by all the participants.

I'would like to thank the National Natural Science Foundation of China. State
Key Laboratory of Scientific and Eugineering Computing. Institute of Computa-
tional Mathematics and Scientific/ Engineering Compnting of Chinese Academy
of Sciences, and Guangxi University for the financial supports which made the
conference possible. T want to thank myv colleague Professor Dai Yuhong. myv
post-doctors Dr Wang Zhouhong and Dr Shi Zhenjiun. and my students Li Gaidi.
Wang Liping. Wen Zaiwen. Yan Tao. Xia Youe. Zheng ZhenZhen and Professor
Dai’s student Qiging Hu. for their helps in the organization of the conference. |
would also like to thank Professor Zengxi Wei of Guanexi University for his assis-
tance on the local arrangements. Finallv, T am very grateful to Wen Zaiwen for
his helps in the editing of the proceedings.

Ya-xiang Yuan
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Faculty of Information Technology and Systems
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P.O. Box 5031. 2600 GA Delft, The Netherlands

Abstract: The most computational intensive part of interior point methods
for solving various kinds of optimization problems is the solution of large linear
systems. This note discusses several applications of linear systems with low-raunk
npdates which arise in interior point methods and can efficiently be solved. 1t is also
briefly discissed how this method is related to the widelv used Sherman-Morrison
formula. The relation with the normal equation and angmented svsten approach.
used in interior point methods for linear optimization to calculate the search di-
rections. is discussed. Further. applications in potential reduction methods. nenral
network training and conic quadratic optimization are discnssed as well,

* 'The major part of the research was done while the fourth anthor visited the t he Department
SSOR of the TU Delft. He gratefully acknowledges the financial support of the department.
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Keywords: Linear programming. interior point methods. linear equation svs-
tems, positive definite matrix. rank-one update. Sherman-Morrison formula.

1 Introduction

When applying an interior point method to solve optimization problems. large
linear equation systems like

Qr = q.

where @ is an n x n matrix and ¢ € € R"” turn up regularly. The coeflicient ma-
trix  in such linear systems is frequently sparse (less than 1% of the coefficients
is nonzero). By exploiting the sparsity structure of Q one can solve such linear
systems with hundreds of thousands or even millions of variables. As the density
of the coefficient matrix increases. i.e. the percentage of nonzero coeflicients in-
creases, the efficiency of the solution procedures deteriorates. One possible way
of getting a dense coefficient matrix is that the original matrix Q is modified by
a rank one (or more generally by a low-rank update) [9: 8 19]. Even a rank-one
update by the all-one vector e results in the completelv dense matrix Q + ee':
without wtilizing this special structure. large linear systems with such coefficient
matrices would not be solvable. Dense matrices which are a sum of a sparse matrix
plus some low-rank terms arise frequently in practice. In fact as has been observed
by Fiacco and McCormick [4. p. 185]. then the Hessian of many functions can eas-
ilv be written as a sum of a diagonal matrix and some low-rank terms and thev
call such functions factorable. This implies if an optimization problem containing
only factorable functions is solved using a Newton based method. then the coef-
ficient matrix will contain low-rank terms. Moreover. the coefficient matrix can
frequently be written as a sum of a sparse matrix plus a dense low-rank update.
"This for example happens when solving large linear optimization problems having
dense columns using interior point methods [2: 3: 6: 13: 16]. Contrary to our ap-
proach, dense linear systems obtained by low rank updates are solved frequently
by using preconditioned conjugate gradient methods 8].

This paper is organized as follows. In Section 2 the approach to solve linear
systems with low-rank updates is reviewed: see also [7]. Section 2.3 discusses
how the method relates to a clever use of the Sherman-Morrison [5] formula. In
Section 3.1. the use of low rank updates in interior point algorithms to solve
linear optimization problems is discussed. In particular. efficient handling of dense
columns in the coefficient matrix of the linear optimization problem is considered.
Finally, in Section 3 further applications are discussed.

2 Solving Linear Systems with Low-rank Updates

In this section we first review a method to solve linear systems with low rank
updates. It can also be found in [7]. Subsequently. for completeness we verify its
correctness. Finally, the relation with the well-known Sherman Morrison formula
is made explicit.

2.1 The solution procedure

Large. typically sparse linear equation systems have to he solved in maitny ap-
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plications of mathematics. Frequently the coefficient matrix of a linear system is
a low-rank update of a non-singular (in many cases positive definite) matrix. Here
we discuss the solution of such linear systems. To be concrete, let us consider the
following system of linear equations with the unknown vector = € € R™,

(Q+RST)z =g, (2.1)

where Q is an n x n matrix, R and S are n x k matrices and ¢ € € R" are given.
We make the following assumptions.
Assumptions:

1. The matrix @ is nonsingular.

2. The rank of both R and S are equal to k < n.
3. The matrix Q + RST is nonsingular.

4. The matrix Q is sparse, while RST is dense.

We will see later that Assumptions 1-4 guarantee that the system (2.1) is solvable
efficiently.
As it is intuitively clear, solving a linear system

Qx =g, (2.2)

where the sparse matrix @ is the coefficient matrix is computationally cheap,
while directly solving equation system (2.1) with the dense coefficient matrix is
computationally expensive. Qur primary goal is to utilize the sparsity of the matrix
Q. As the first step we reformulate (2.1) as follows

Qr=q—RSTz =q— Ry.

For a moment neglecting the fact that the vector y = STz depends on the unknown
vector  we can decompose the solution process into the following steps.
Algorithm 2.1.

Step 1. Determine xg, the solution of the sparse system Qzo = q.

Step 2. Determine the solution of the sparse system QU = R, where U is an
n X k matriz matriz of unknowns.

Step 3. Now we consider how to find an appropriate vector y. By the definition
of y we have
y=S8Tz=5"(xo - Uy),

or equivalently, y is the solution of the system
(I +STU)Yy = ST xy. (2.3)

Step 4. Let U be the n x k matriz with column vectors uj. Then we have the
solution )

z=z9—Uy.
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The above procedure involves the solution of & + 1 sparse linear systems (in
Steps 1 and 2). all with the same sparse coefficient matrix @, hence these can be
solved easily.

I the next section we will verify that the k-dimensional linear equation system
(2.3) has a unique solution and that in the way we just indicated. the linear
equation systeni (2.1) can indeed be solved efficiently.

Before doing that, let us make a simple estimation of the computational com-
plexity under Assumption 4. By a direct approach the linear system (2.1) with
a dense coefficient atrix can be solved in O(n?) arithmetic operations. As-
sume that the matrix @ is sparse and so the equation system Qry = g can be
solved in p < O(n?®) arithmetic operations. We have to solve k + 1 such sys-
tems and a small dense system with & unknowns. Thus the total complexity
becomes (k + 1)p + O(k3). Note that. in many applications matrix Q is either
(multi)diagonal. or block-diagonal with small diagonal blocks. As a consequence
one has p = O(n). Indeed, in many of these cases it holds that k < O(\/n). so the
total computational complexity becomes O(ny/n). which is a factor n\/n better
than the direct approach.

2.2 Verification

As it is proposed above the linear system (2.1) is solved by solving k + 1 linear
equation systems with the same coefficient matrix Q and a small k x & linear
system as follows.

Let zg € € R" be such that Qzo = ¢ and u; € € R" such that Qu; = r,
for j = 1,--- k, where 7; denotes the jth column of matrix R and finally, let
y € € R* be such that (I + STU)y = 5Tz,. where I denotes the k-dimensional
identity matrix and U = [uq, -+ . ux]. We prove the following theorem.

Theorem 2.2. If Assumptions 1-3 hold then the unique solution of the linear
system (2.1) is given by

.l’:.r()*UyA

Proof. First note that by Assumption 3 the solution r exists and it is unique. By
Assumption 1. zo and the r; are unique as well. Further, by Assumption 2 the
vectors rj, j=1,---,k are linearly independent and then. by Assumption 1, the
solution vectors u;. j=1,---,k are linearly independent as well. i.e. rank(U/) = k.
Now by proving that the coefficient matrix I+ STU is nonsingular we verify that y
is unique as well. Assume to the contrary that there is a nonzero vector w € € R*
such that (I + STU)w = 0, or equivalently STUw = —w. Then. by multiplying
the nonsingular matrix @ + RST by the nonzero vector Uw and using Qu j=7Ty
we have

(Q + RSTYUw = (QU)w + R(STUw) = Rw — Rw
vielding a contradiction.

Finally by simple calculations the reader may verify that (Q+ RST)(xo-Uy) =
g which completes the proof. 0
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2.3 The Sherman-Morrison Formula

There is an intimate relation between the solution procedure we reviewed and
the well known Sherman-Morrison formula [5], given below. For a survey of the
Sherman-Morrison formula we refer the reader to Hager [7].

Sherman-Morrison formula:

(Q+RST)1=Q ' -Q'RUI+STQ'R)TISTQ™! (2.4)
We can make two important observations.

s Having proved the correctness of our procedure the Sherman-Morrison for-
mula (2.4) can be derived from our procedure. This can be done as follows.
By definition — we have 7o = Q7 'q, U=Q 'Rand y = (I + STU)"18Tzq
— the solution x is given by
z=120-Uy = Q lg— Q'R+ S5TU)' 8z
= (@ '-Q'RI+STQT'R)TISTQ g
By Assumption 3 we can write z = (Q + RST)~!q. Comparing this with the

above expression and observing that Theorem 2.2 holds for all right-hand-
side vector ¢ € € R™ the Sherman-Morrison formula (2.4) follows.

m  On the other hand, one can derive our procedure by carefully analyzing the
Sherman-Morrison formula (2.4). Using again that the solution of (2.1) can
be written as z = (Q + RST) !¢ we have

r=(Q'-Q 'R+ 5TQT'R)'STQ™Y)q.

Here all the “inverse matrix — vector” products have to be replaced by the
solution of a linear equation system. Thus we have the expression Q¢
which is equivalent to zo; the expression @ 'R which is equivalent to U;
and finally, having these done, the expression

(I+STQ'R)"'8TQ lqg= (I +STU) 'S8Tz
which is equivalent to z.

3 Applications in Interior Point Methods

3.1 Normal Equations Versus Augmented System in Linear Optimiza-
tion
When solving linear programming problems with interior point methods one
has to solve at each iteration [2; 3; 6], either the so-called normal equation

(AD"2AT)z =¢q (3.1)

or the so-called augmented system

(& 8)(2)-(3) e
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where matrix 4 is the m x n constraints coefficient matrix of the linear program-
ming problem with rank(4) = m. the matrix D is an appropriate n dimensional
positive definite diagonal matrix and ¢ € € R". The exact values and definitions
of D and q are specific for the different algorithmic variants. The reader easily
verifies that the solutions = of both syvstems (3.1) and (3.2) are identical.

Early implementations of interior poiut methods were based on the normal equa-
tion approach [12]. People recognized that dense columns of the matrix A result
in unacceptable fill-in in the coefficient matrix AD~?AT of the normal equation.
Let us have a closer look at this problem. For simplicity let us assume that the
problem is scaled in such a way that D = I, and that all the dense columus are the
last columns. thus matrix A can be partitioned as 4 = [A,. Ag] where Ag contains
the sparse and A, contains the dense columns. Now (3.1) gives

(A A+ A =q (3.3)

In the case 4, AT is nonsingular. this system is in the form (2.1) with@Q = A AT,
hence can be solved efficiently. Thus our procedure described above can be used
efficiently to handle dense columns in linear programming when solved by interior
point methods. When A,A! is singular a further trick will be needed.

Having a closer look at the augmented system (3.2) an interesting observation
can be made. By substituting 4 = [A;, 4;] we have

0 A, Ay T —q
AT 1 0 o= o]. (3.4)
AT 0 1 22 0

By performing the pivots at the central unit matrix block we have

—A,;A;r 0 Ad T —q
AT 1 o ! | = 0 (3.5)
AT 0 1 r? 0

i.e. one has to solve the system

—A,AT 4, : — .
G0

The sparse part is nonsingular. If in (3.6) we would pivot on the unit matrix
block we would get the dense normal equation (3.3). Instead. assuming
(again, as above) that the matrix Q = AsAT is nonsingular, we pivot on the
left upper block which results in

I -Q'A x Qg )
(0 rido™a, ) ()= (b, ) e

Now the reader readily recognizes that the right hand side of (3.7) can be
calculated by solving Qr = ¢ and one obtains 7, = @ 'g. Similarly, the
matrix U = Q" 'A4 can easily be calculated as well, and then clearly the
equation (I+ATQ 1A4,)x? = —AEIU is equivalent to solving (/ +ATU)x? =
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— A ro. Henee our procedure can be interpreted as a specitic implementation
.
of the angmented system approach.

The sparse part is singular. In the case A4} is singular. we cannot apply the
above procedure. To handle this case efficiently a clever trick of K.D. Ander-
sen [3] is needed. The solution process up to formula (3.6) can be performed
independently of the (non)singularity of 4.1 but then. due to the singu-
larvity of A4l we cannot pivot on this block. To ensure the nonsingularity
of this sparse block a nonsingular. possibly diagonal subsidiary matrix £/ is
nsed. The reader easily verifies that the sysrem

—AAY - HHY A, H

. T —q

1
A r o 2] = 0ol (3.8)
HY 0 1 " v

is equivalent to the linear system (3.6). but here the sparse left-upper block
is nonsingnlar, thus our procedure is applicable again

3.2 Karmarkar’s Potential Function in Combinatorial Optimization
Let ns consider the binary feasibility problem (BFP).
(BFP)  find e {—1.1}" such that Ar < b.

Here 4 € € R, b e € R'. Problews in this formatr are also considered in [8:9].
Karmarkar [X: 9] presented a potential reduction algorithm to solve problems of
the form (BEP). After relaxing the integrality constraints to linear constraints
—¢ < < e (here e denotes the all-one vector of length n). he proposed to optimize
a nonconvex potential function in order to get integer solutions. Let us assume
that an interior solution & (ie. Ar < b, —e < o < ¢) is given. Then Karmarkar's
potential function is given by
1
olry=logvn—aTr - = 8

m
J=1

. (3.9)

where the variables s; are the slack variables associated with all the inequality
constraints involved in the relaxed problem (note that m = ¢ + 2n and the slack
rariables are s; = b, — (zjl oo l< i<t s, =l —r, s bt <<t 4o

and s, = 1+ 2,1y, (+n+1<j<t+2n) To minimize Karmarkar's po-
tential function (3.9) a trust region algorithm is implemented. In this algoritim

f Observe that in actual implementations of the augmented system approach the last men-
tioned pivots on the block —A<A! are not performed explicitly: instead. a Bunch-Parlett factor-
ization is made. The augmented system approach with Bunch-Parlett factorization automatically
does the job of efficiently handling dense columns in interior point methods.

I Note that if the linear optimization problem is preprocessed so that the problem is trans-
formed to the canonical (inequalities and nonnegative variables) form. then this trick is not
needed. In this case the left upper sparse block of the linear system has the form — 4. AV D
where D is a positive diagonal matrix. Becanse this matrix is nonsingular. our procedure is
applicable without further adjustment.
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linear systems involving the Hessian of (3.9) as the coefficient matrix. are solved
repeatedly. This Hessian matrix is given by
1 2 1 —T _o—
Ho(u) = -1 - zzt + (= + n)A S?A,
fo fo m

where fo =n —alz. A= (AT.I.-I)T and S is the diagonal matrix of the slack
variables (for more details see [8: 9: 19]). Due to the term zz' the matrix H,
is completely dense. Assuming that matrix A is sparse. the matrix Hg(u) is a

rank-one update of the sparse matrix —lyl + (;L— + u)XTS'ZZ. hence the theory
discussed in this paper is applicable to minimize Karmarkar's potential function
efficiently. However. an additional requirement has to be satisfied: namely the
parameter g must be such that H,(u) is positive semidefinite. while at the same
time the norm of the solution x = (Hs(p)) 'h (here h denotes the right hand side
of the linear systemi) must be sufficiently large. Note that this norm decreases
when p increases. Thus, it is not possible just to choose a large value for p (to
make sure that H,(u) is positive semidefinite). Now we show that we can use the
rank-one update scheme and still check whether H,(u) is positive definite.
We have the following theorem.

Theorem 3.1. Assume that R € € R"™" is symmetric. Then R —zzT is positive
definite if and only if R is positive definite and zTR™1z < 1.

Proof. Using the well known Schur complement reformulation we know that R —

227 is positive definite if and only if the matrix

K

is positive definite. Thus, R must be positive definite and it easily follows that
TRz < 1, or equivalently, zTR™'z < 1 if and only if R — 227 is positive definite.
0

Hence we obtain the following scheme to solve the system
(R—z:Nx=q. (3.10)
with the additional condition that R — zzT be positive semidefinite.

(1) Determine the Cholesky factor U of R. If during this process R is discovered
to be non positive definite, stop.

(2) With the help of U, solve Rrg = z. If 2TR™ 'z = 2Tzy > 1, R — 22T is not
positive semidefinite, so stop.

(3) Solve Rxy = q, again using U.
(4) Let o := T%l};? Then z = x1 + axg solves system (1.2).

This technique is used in the computational results reported in [19].
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3.3  An application in unsupervised neural network training

In nunsnpervised neural network training. the objective is to categorize or dis-
cover features or regularities in a given set of training data. An approach proposed
by Linsker [10] is to maximize the output variance. This gives rise to a nonconvex
quadratic optimization problem of the following form.
(C+eeVyr+ el

minimize r

— o) =

subject 1o 0 < < e,

Here the matrix (' is related to the auto corrclation matrix which is (in this case)
negative definite. In [17] a potential reduction approach to solve the above problem
is developed. This involves solving linear svstems with the matrix (' + ee’ as a
coefficient marrix. Obviously. if (7 is sparse. the technicuie described in this paper
can be used to speedup the computations.

3.4 Markowitz portfolio model

The well-known Markowitz portfolio problem can he modelled by the following
convex quadratic optimization problem
T

L Lo,
minimize ;H[-‘,-M-T r

subject to Ar = b, (3.11)

x> ).

where A is either just the all-one vector (44 = €1} or a matrix with significantly
less rows than columns.  Fis a k& x n dense matrix. where in practice & quite
frecuently is much smaller than 1. Now if (3.11) is solved using one of the popular
interior point methods [15]. then in cach iteration a linear cquation system having
the coefficient matrix

AD + Fhpy~igt

should be solved. In this case D is a positive definite diagonal matrix. One possible
way of solving (3.4} is of course to form the inverse of (D + FTF) explicitly.
However. the technique presented in Section 2 is directly applicable which in this
case leads to computing the inverse (or a Cholesky factorization) of a & x A matrix
instead of a n x nmatrix. Given & is mueh smaller than n a large computational
saving is realized. Tt should be noted that Fiacco and McCormick (4. p. 186]
and later Vanderbei and Carpenter [18. p. 22} have noted that this particular
struncture in the portfolio optimization problem can be exploited ro speed up the
computations,

3.5 Conic quadratic optimization

Recently. so-called conic quadratic optimization or second order cone optimiza-
tion has received much attention due to the wide applicability of the model. sce
[11]. A conic quadratic optimization problem can be stated as follows



