* THE LOGICAL DESIGN
OF OPERATING SYSTEMS

ALAN C. SHAW

THE LOGICAL DESIGN
'OF OPERATING SYSTEMS

ALAN C. SHAW

Computer Science Group
University of Washington

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, N. J.

Library of Cougre:s Cataloging in Publicallon Data
SHAW, C

The logical design of operating systems.

(Prentice-Hall senu in automatic computation)

Bibliography: .
1. Electronic dxgnal computcn—l’rommla. *
2. Multiprogramming (Electronic computers) . Title.

A76.6. gsz 001.6'42 74-537
ISBN 0-13-540112-7

© 1974 by Prentice-Hall, Inc., Englewood Cliffs, N.J.

All rights reserved. No part of this book may be
reproduced in any form, by mimeograph or any other means,
. without permission in writing from the publisher.

109 87 6

Printed in the United States of America -

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney .
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PREFACE

Computer operating systems are among the most complex “systems”
devised by humans, afid it is only recently that we have been able to under-
stand and coherently organize this complexity. This book is a text on the
principles of operating systems, with particular emphasis on multiprogram-
" ming. I have tried to present the concepts and techniques required for engi-
neering and understanding these systems rather than discuss in detail how
operating system x is implemented on machine y; however, many examples
from real systems are given to illustrate the application of particular prin-
ciples. The title “logical design” was selected to stress my concern with the
logical organization and interactions of the elements of operating systems
and with methods of “reasoning” about them.

The book is intended for computer science students and professionals
with a basic knowledge of machine organization, assembly ianguage, pro-
gramming languages, and data structures. The prereéquisite background can
be obtained in an introductory one-term course in each of thie above subjects,
approximately equivalent to courses B2, 11,12, and I3 of the curriculum
proposed in Curriculum 68 by the Association for Computing Machinery'.
While the book was being written, I used it as the primary text for a one-term
graduate course 'at Cornell University and at the University of Washington.
The book is suitable for a one- or two-term course at either the graduate
or advanced undergraduate level, and contains almost all the topics suggested
in course 14 of Curriculum 68! and in the more recent COSINE report?.

1ACM Curriculum Committee on Computer Science. Curriculum 68, recommendations
for academic programs in computer science. Comm. ACM, 11, 3 (March 1968), 151-197.

2COSINE Committee of the Commission on Education. An undergraduate course
on operating systems principles (Denning, P. J., chairman). Commission on Education,
National Academy of Engineering, Washington, D.C., 1971.

xi

xii PREFACE

My global view is that the subject of operating systems is most conven-
iently divided into three related areas: process management, resource
management, and file systems. Each of the nine chapters of the book is con-
cerned with some aspects of one or more of these areas. Chapter 1 provides
an overview of the organization of systems hardware and software, including
a historical perspective and rationale. In Chapter 2, I use the simple setting
of a job-at-a-time batch system to present some basic ideas on linking loaders
and input-output methods. The model of interacting processes as a means
for describing systems and as a framework for solving problems of process
comnmunication and synchronization (including some problems introduced
in Chapter 2) is developed in Chapter 3. Chapter 4 is an introduction to multi-
programming systems; building upon the material developed in the preceding
chapters, it discusses hardware and software requirements for multiprogram-
rhing, the “virtual” machines viewed by users and by systems programmers,
and design methodoiogies. Techniques for the management of real and virtual
memories are investigated in Chapter 5; the following chapter (Chaptelj 6)
continues the study of the main memory resource, looking at the problems of
single-copy sharing of information in real and virtual memory systems.
Process and resource management ideas are consolidated in Chapter 7, where
a comprehensive nucleus is described and used as a model for examining
systems data structures, input-output processes, interrupt handling, and
scheduling methods. Chapter 8 gives a detailed treatment of systems dead-
lock ; methods for deadlock detection, recovery, and prevention are described
for both serially-reusable (conventional) and consumable (message-like)
resources. The last chapter (Chapter 9) discusses the basic elements of file
systems, including a section on recovery from failure.

The book contains many exercises which the reader is strongly encouraged
to do. In learning new ideas on computer systems, it is particularly important
that students be given the opportunity to apply these ideas through pro-
gramming projects. Nontrivial but tractable projects are not easy to design;
for this reason, I have included an appendix containing a detailed specifica-
tion of a large but manageable multiprogramming project which I have used
successfully several times.

I have tried to reference all the material carefully so that the reader can
pursue some area in further depth or obtain another point of view, and so
that proper credit is given to the source f’f each technique or idea. I sincerely
regret any errors or omissions in the latter. All references are collected at the
end of the book and are cited in the text by the last name of the author fol-
lowed by a date, e.g., Dijkstra, 1965b. '

PREFACE Xiii

AGKNOWLEDGEMENTS

I am very grateful to a number of people for their help, encouragement,
and intellectual influence during the preparation of this manuscript. W. F.
Miller first introduced me to the pleasures and satisfaction of research and
scholarship, and provided early support of my book writing in operating
systems. I had the privilege of assisting N. Wirth in a systems programming
class at Stanford University in 1965-66 and produced a.set of notes based on
his lectures;t these notes contained some of the principal ideds underlying
the design and construction of operating systems and compilers. I am also
indebted to Wirth for showing me that systems design and programming can
be a scientific activity. .

J. George and J. Horning read the manuscript and offered many con-
structive suggestions. The book developed from the “laboratories” of my
operating systems classes at Cornell University and the University of Wash-
ington; I thank the students in these classes for their stimulation, energy,
curiosity, good humor, and willingness to help definé and organize a new
field. G. Andrews, R. Holt, N. Weiderman, and T. Wilcox were especially
helpful, not only in the above capacity but also as active research colleagues.
In particular, parts of Chapter 7 use the results of the Ph.D. work of Weider-
man and Chapter 8 is based on Holt’s Ph.D. research.

My final acknowledgements go to the many researchers and practitioners
who have contributed to the development of the field of operating systems,
I have been most influenced by the published works of E. W. Dijkstra, and
discuss his contributions throughout the book.

ALAN C. SHAwW
Seattle, Wash.

tShaw, A. C., Lecture Notes on a Course in Systems Programming, Tech. Report No. 52,
Computer Science Dept., Stanford University, Stanford, Calif, Dec. 1966. (Avzilable from
the Clearinghouse for Federal, Scientific, and Technical Information, U.S. Dept. of Com-
merce, . National Bureau of Standards, Springfield, Virginia 22151 (Aécession No.
PB176762)).

CONTENTS

PREFACE xiii

1 THE ORGANIZATION

OF

1.1
1.2
1.3

14

1.5

COMPUTING SYSTEMS 1

Some Definitions 1

Notation for Algorithms 3
Historical Perspective 5
1.3.1 Early Systems 5

1.3.2 Second Generation Hardware and Software 8
1.3.3 «Systems of the Third Generation and Beyond 9

Some Views of Operating Systems 10

1.4.1 Virtual Machines, Translation, and Resource Allocation
14.2 Four Key Issues 14

Systems Organization 14

) 2 BATCH PROCESSING SYSTEMS 17

21
22

23

24

25

Introduction 17

Linking and Loading 18

2.2.1 Static Relocation 20

2.2.2y The Linking Process 20

Input-Output Methods 25

2.3.1 Direct I0 27

2.3.2 Indirect IO 28 _
10 Buffering 29 \
2.4.1 CPU Interrogates Channel 30 -

24.2 Multiple Buffers and a Coroutine Program Structure
2.4.3 Channel Interrupts CPU 38 .
24.4 Buffer Pooling for Input and Output 41
The IO Supervisor ~ 49

vii

32

11

wiii

CONTENTS

INTERACTING PROCESSES 50.

3.1 Parallel Programming 50

3.1.1 Applications 50

3.1.2 Some Programming Constructs for Parallelism 54
3.2 The Concept of a Process 58
3.3 The Critical Section Problem 59

3.3.1 The Problem 59

3.3.2 Software Solution (Dijkstra, 1965a, 1968b) (7
3.4 Semaphore Primitives 65

3.4.1 The P and V Operations 65

3.4.2 Mutual Exclusion Using Semaphore Operations 66

3.4.3 Semaphores as Resource Counters and Synchronizers

in Producer Consumer Problems 67

3.5 Implementing Semaphore Operations 80

3.5.1 Implementation With a Busy Wait 81

3.5.2 Avoiding the Busy Wait 82
3.6 Other Synchronization Primitives 84

INTRODUCTION ,
TO MULTIPROGRAMMING SYSTEMS 88

4.1 Rationale for Multiprogramming -88
4.2 Systems Components 90
4.2.1 Hardware Features 90
4.2.2 Basic Software 92 .
4.3 Operating System Nucleus 96
4.4 The User Interface 102
4.4.1 Command and Control Languages - 102
4.4.2 Job Control 103
4.5 Elements of a Design Methodology 106

MAIN STORAGE MANAGEMENT 109

5.1 'Static and Dynamic Relocation 109
. 5.1.1 Hardware Address Relocation 109 .
5.1.2 Arguments for Static and Dynamic Relocation 111
}5.1.3 Virtual Memories 114)
5.2 | Principles of Segmentation and Paging 116
5.2.1 Single Segment Name Space. 116
J.2.1.1 Contiguous Storage Allocation 116
52.1.2 Paging’ 117
5.2.2 Multiple Segment Name Space - =~ 122

5.2.2.1 Contiguous Allocation Per Segment 122
5.2.2.2 Paging With Segmentation 123

53
54

55
5.6

CONTENTS

Real and Virtual Storage Protection 124
Allocation Strategies 130 .
5.4.1 Storage Allocation in Non-Paged Systems 130
5.4.2 Allocation in Paged Systems 138
5.4.2.1 Static and Dynamic Allocation 138
5.4.2.2 Replacement Schemes 141
Evaluation of Paging 144 '
Storage Hierarchies 148

PROCEDURE AND DATA SHARING
IN MAIN STORAGE 152

6.1
6.2
6.3
6.4

Why Share? 152

Requirements for Code Sharing 153
Sharing in Statically Allocated Systems + 156
Dynamic Sharing 158

6.4.1 JForm of a Procedure Segment 159
6.4.2 Data Linkage 161

6.4.3° Procedure References 163

PROCESS AND RESOURCE CONTROL 166

7.1

72

73
74

7.5

Data Structures for Processes and Resources 167
7.1.1 Process Descriptors 167

7.1.2 Resource Descriptors 171

Basic Operations on Processes and Resources 177
7.2.1 Process Control 177

7.2.2 Resource Primitives 181

7.2.3 Capabilities 186

Interrupts and Input-Output Processes 187
Organization of Process Schedulers 191

7.4.1 Master and Shared Schedulers 193

7.4.2 Priority Scheduling 194

Scheduling Methods 198

THE DEADLOCK PROBLEM 203

8.1
8.2
8.3

8.4
8.5
8.6

Examples of Deadlock in Computer Systems 204

A Systems Model 209)

Deadlock With Serially-Reusable Resources 213

8.3.1 Reusable Resource Graphs 213

8.3.2 Deadlock Detection 215

8.3.3 Recovery from Deadlock 224

8.3.4 Prevention Methods 227

Consumable Resource Systems 232

General Resource Graphs 239

Dynamic Addition and Removal of Processes and Resources 240

X CONTENTS

9 FILE SYSTEMS 244

9.1
9.2
9.3
9.4

9.5
9.6
9.7

Appendix:

Virtual and Real File Storage 245

File System Components 247

Logical and Physical Organizations 252
Accessing Procedures 256

9.4.1 File Directories 256

9.4.2 Descriptors for Files 260

9.4.3 Access Control 261

9.4.4 Opening and Closing Routines 264
Management of Auxiliary Storage Spacc 265
A Hierarchical Model for File Systems 268
Recovery from Systems Failure 272

A MULTIPROGRAMMING PROJECT 277

Al. Introduction 277

A2. Machine Specifications 278

A3. Job, Program, and Data Card Formats - 283
A4. The Operating System 284 ’

AS. Project Requirements 285

A6. Some Limitations, 286

REFERENCES 287

INDEX

293

THE ORGANIZATION OF COMPUTING
1 SYSTEMS ‘

The term logical design is used by computer designers to describe a sys-
tematic methodology, based on Boolean algebra, for designing switching
networks. This book uses the term in a broader sense to denote a general
method of reasoning about operating systems which allows their systematic
design, and the study of their organization and behavior. Our emphasis is
on general principles as opposed to ad hoc “tricks;” thus, coding techniques
are not discussed in great detail, nor do we present a case study of a particular
commercial system, even though many examples from the latter are given to
illustrate particular points. ’

This chapter introduces the subject by examining the historical develop-
ment of hardware and software components, by briefly cutlining the organi-
zation and functions of computing systems, and by discussing systems pro-
grams from several different points of view. First, some basic terminology is
defined.

1.1. SOME DEFINITIONS

Words such as “operating system,” “time-sharing,”or “multiprogram-
ming” do not have widely accepted precise definitions, except perhaps within
the context of a theoretical study restricted to some small aspect of systems.
Instead, these terms denote certain types of organization, functions, behavior,
and/or methods of operation. With this in mind, we informally define several
important terms commonly used to describe systems. ‘

An operating (supervisory, monitor, executive) system (OS) is an organized
collection of (systems) programs that acts as an interface between machine
hardware and users, providing users with a set of facilities to simplify the

1

2 THE ORGANIZATION OF COMPUTING SYSTEMS CHAP. 1
£ .
design, coding, debugging, and maintenance of programs; and, at the same
time, controlling the allocation of resources to assure efficient operation.

There are three categories of “pure” OS’s, each of which may be char-
acterized by the type of interaction permissible between a user and his job,
and by the tolerances on system response time:

1. A batch processing OS is one in which user jobs are submitted in sequen-
tial batches on input devices and there is no interaction between a user and
his job during processing. The user is completely isolated from his job and,
as a result, equates system response with job turnaround time. The latter is
generally satisfactory if it can be measured in small numbers of minutes or
hours. Consequently, the OS can follow a relatively flexible scheduling policy.

2. A time-sharing OS is a system that provides computational services to
many on-line users concurrently, allowing each user to interact with his
computations. The effect of simultaneous access is achieved by sharing pro-
cessor time and other resources among several users in a manner that guaran-
tees some response to each user command within a few seconds. The computer
is allocated to each user process for a small “time-slice,” normally in the milli-
second range; if the process is not completed at the end of its slice, it is inter-
rupted and placed on a waiting queue, permlttmg another process its turn at
the machine.

3. A real-time OS is one that services on-line external processes having
stric: timing constraints on response. Interrupt signals from external pro-
cesses command the attention of the system; if they are not handled promptly
(in microseconds, milliseconds, or seconds, depending on the process), the
_external process is seriously degraded or misrepresented, These systems are
often designed for a particulat application, for example, process control.

A particmar OS might provide for any or all of batch processing, time-
sharing or real-time jobs. For example, both real-time and time-sharing
systems usually process batch jobs in the “background” when there is no on-
line or external activity.

The most common method for implementing OS’s is through multipro-
gramming. A multiprogrammed (multiprogramming) OS (MS) is one that
maintains more than one user program in main storage simultaneously,
sharing processor time, storage space, and other resources among the active
user jobs. This resource sharing extends into the operating system; the pro-
grams comprising the OS are themselves multiprogrammed in most large
systems.

Another way for an OS to process several jobs at once is by swapping. A
swapping OS maintains several jobs on secondary storage and only one job
in main storage at any time: the system switches to another job by moving

SEC. 1.2 . NOTATION FOR ALGORITHMS 3

the current job out of main store and loading a selected job from auxiliary
+ storage. If the previous job is not completed, it will be swapped back in at
a later time. This technique has been used mainly in small time-sharing
systems.
Our last definition, multiprocessing, describes the hardware configuration
of a system and is sometimes confused with multiprogramming. A multi-
processing computer system is a computer hardware complex with more than
one independent processing unit. This includes central processors (CPU’s),
input-output (I0) processors, data channels, and special purpose processors,
such as arithmetic units. Most often, the term refers to multiple central pro-
cessing units.
' This book is concemed primarily with multlprogrammed operating sys-
tems-—the advantages and disadvantages of this organization as compared to
others, and the techniques and requirements for time, space, and other re-
source sharing.

1.2. NOTATION FOR ALGORITHMS

The programming tanguage Algol 60 (Naur, 1963), and recognizable
variations thereof, will be our primary means for specifying algorithms.
Algol, rather than English, flow charts, assembly language, or some other
higher level language, was selected for the following reasons:

1. The syntax and semantics of Algol are clearly defined, with little
ambiguity, in the public literature.

2. It has been used successfully for many years as an international pub-
lication language for algorithms.

3. Algol-like descriptions can be sufficiently “high-level” to. eliminate
.many housekeeping details, if that is desired. Conversely, it can be used in a
“low-level” manner that maps into machine language i in a straightforward
way.t

4. The author and many of his students and colleagues have found this
to be a powerful notation for deriving, organizing, and analyzing algorithms.
- [For an introduction to Algol 60 and a copy of the original report, see Rosen
(1967, pp. 48-117).]

- tWhile we ascribe to the general philosophy of structured programming (see, for
example, Dijkstra, 1969 and SIGPLAN, 1972), the reader will still find go to statements in
some of our programs. go to’s have not been totally eliminated in favor of some other
constructs because they are useful for describing machine level activities in a clear way and
for explicitly exhibiting flow of contrdl, yet they can also be used in a disciplined manner

" to yield well-structured programs.

4 THE ORGANIZATION OF COMPUTING SYSTEMS CHAP. 1

Example of an Algol procedure

Tree-like data structures are often used in operating systems, for example,
to represent process hierarchies (Chapter 7) or file directories (Chapter 9).

A binary tree consists of a finite set of nodes that is either empty or can be
divided into a root node and two disjoint binary trees, the left and right sub-
trees (Knuth, 1968). Let each node » in a binary tree be represented by the
triple (Data[n], Left[n], Right[n]), where Dataln] is a positive integer, Left[n] is
a nonnegative pointer to the root of the left subtree, and Right[n] is a non-
negative pointer to the right subtree. Reserve the node pointer n = 0 for the

empty tree. Assume that for each node »: .
a Data[n] < Data[x] for all x € Leftsubtree(n) and
Data[n] > Data[x] for all x € Rightsubtree(n).

Figure 1-1 contains an example of such a tree. [Symbol tables.are some-

25
AN
30 16
/N /\
33 28 20 4
// /\
29 22 5 2
(a) A Binary Tree

i:| Data [i], Left [il, Right [il |

10:(500] 11:[200]

(b} internal Representation

Fig. 1-1 Binary tree ommzed for fast sorting, searchmg, and
mscrtmg

) sec. 1.3 HISTORICAL PERSPECTIVE 5

times organized in this manner so they may be expanded and searched easily
(Gries, 1971)). Below is an Algol procedure Treesearch(root, arg, m) which
will search the tree with root root for a node n such that Data[n] = arg;
it will return true and set m to the matching node if successful, and false
otherwise. The algorithm uses the recursive definition of a binary tree directly.

Boolean procedure Treesearch(root,arg, m) ;
value root, arg ; integer root, arg, m ;
comment Data[], Left [], Right |] are assumed global to this procedure. -
Search the tree with root root for the node n such that Data[n] = arg ;
if root = O then Treesearch := false else
begin
integer d ;
d:= Data[root] ;
if arg = d then begin m := root ; Treesearch = true end
else
if arg > dthen Treesearch := Treesearch(Left{root]}, arg, m)
else Treesearch := Treesearch(Rzght[root], arg, m)
end

EXERCISE

Write an Algol procedure Addtotree(root, n) which takes the binary tree with
root root and node grdering defined by (1), and adds the isolated node n to it retain-
. ing the ordering of (1). Write another procedure which prints the data of the tree
. in ascending sequence; use any convenient primitive, such as Write(x), as an
~ output call to print the variable x.

1.3 HISTORICAL PERSPECTIVE

This section briefly describes the historical evolution of computer hard-
ware and software systems. A more detailed dlscussmn and blbhography can
be found in S. Rosen (1969) and R. Rosin (1969)

1 .3.1 Early Systems

From about 1949, when the first stored program digital computer actually
started executing instructions, until 1956, the basic organization and mode
of operation of computers remained relatively constant (with some farsighted
but mostly unsuccessful exceptions). Their classical von Neumann archi-
tecture was predicated on strictly sequential instruction execution including
input-output operations: When loading and running programs, users would
work at the console directly on-line to the machine, setting registers, stepping

6 THE ORGANIZATION OF COMPUTING SYSTEMS CHAP. 1

through instructions, examining storage locations, and generally interacting
with their computation at the lowest machine level. (Time-sharing systems
were a recognition of the advantages of operating in this fashion but at a
higher'level than the “raw”™ hardware). Programs were written in absolute
machine language (decimal or octal notation) and were preceded by an
absolute loader.

It is instructive to review the procedures for absolute loading since, ¢ven
now, they represent the starting point for any software system on a raw
machine. Any computer has the equivalent of a Load button; when pressed
by an operator, it will cause the computer to read an input data record into
some fixed set of contiguous main storage locations and then transfer control,
-i.e., set the instruction counter of the machine, to a fixed address in that set,
usually the first.

Example

Let main storage of a primitive computer be designated M[0], M[1], M[2],

, where each location M{[i] may contain one byte (8 bits) of information.
Suppose that pressing the Load button will cause one 80-column card with
80 bytes of information to be read into M[0), ..., M[79], followed by the
settirzg of the instruction counter to zero; i.e.,

PressLoad: Read(for i := 0 step 1 until 79 do M{i]) ;
Transferto(M([0)) ;

In order to read an absolute program, the first card, the one read by Press-
'Load, must contain machine instructions for reading succeeding cards (or at
least the next card). Let each address, instruction, and datum in our primitive
machine occupy 1 byte. Assume that the absolute program is punched on
cards with the following format:

Card columns Contents

1 loading address LA for Ist byte of program/data part of card. -
2 : . the number of bytes, n, to be loaded; n < 78.

3to(n+2) ~ program/data part; the absolute code.

The last card contains #n = 0, and the “loading address” is interpreted as the
first instruction, the entry point, of the program; Fig. 1-2 shows the required
cards in order. Finally, let storage locations M[r], ..., M[r + 79] be a re-
served read-in area where r is arbitrarily assigned as the starting location of
the read-in area. Then a one-card absolute loader, appearmg on the first
card, performs the following actions: :

SEC. 1.3) HISTORICAL PERSPECTIVE 7

entry
addr.

Absolute
Code

§
0,
J

.

program/data

—9

|
LA}n
|

Absolute
Loader

Fig. 1-2 Absolute loader and code cards.

Load: Read(for i := 0 step 1 until 79 do M[r + i]) ;
LA := M[r]; n:= M[r+ 1] ;
if n = O then Transferto(LA) ;
for i := O step 1 until » — 1 do
MILA + i) := M[r+ 2 + i} ;
go to Load ; :

*

The loadmg process is a vivid example of bootstrappmg— ‘pulling oncself
up by one’s own bootstraps.”

In these early years, programming aids were either nonexistent or minimal
—simple assemblers and interpreters at the most sophisticated installations,
with little use of library routines. As the importance of symbolic program-
ming was recognized and a}ssembly systems came into more widespread use,
a standard operating procedure evolved: A loadsr reads in an assembler;
the assembler assembles into absolute code symbolic decks of user source
programs and library routines; the assembled code is written on fape or
cards, and a loader is again used to read these into main storage; the absolute
program is then executed. Each step required manual assistance from an
operator and consumed a great deal of time, especially in comparison with
the computer time to process the cards at that step.

The “first generation™ of operating systems was motivated by the above
inefficiencies as well as by other considerations. These additional factors
included the expense of on-line operation; the availability of other languages
(the FORTRAN system being most prominent); the development of library
programs and services especially related to input-output operations; and the
awkwardness of translating into absolute code, which required that all

