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PREFACE

The subject of vibration deals with the oscillatory motion of
physical systems. The object of a vibration study is to determine the
effect of vibrations on the performance and safety of the systems
under consideration. The study of oscillatory motion is an important
step toward this goal.

"The purpose of this book is to present the fundamentals of
vibration theory and to provide a background for advanced study in
the field. No attempt has been made to cover all phases of vibrations,
as the subject is very extensive.

"This book is written primarily for mechanical engineering stu-
dents of senior-year-college and beginning-graduate levels. The
reader is assumed to have an elementary knowledge of dynamics,
strength of materials, and differential equations. To provide adequate
background, differential equations and other mathematical tech-
niques used in the book are reviewed in the appendices.

The first three chapters constitute the core of an elementary
terminal course. Chapter 1 describes the general concepts of vi-
bration and simple harmonic motion. Chapter 2 treats systems
having one degree of freedom through the study of a single second-
order linear ordinary differential equation. The significance of each
of the terms in this equation is explained. Then it is shown that this
equation is applicable to the study of a large number of physical
systems. The concept of vibration modes is introduced in Chapter
3. Although the discussion is primarily centered on the two-degree-
of-freedom system, it gives the physical concepts and prepares the
groundwork for studying multi-degree-of-freedom systems by other
mathematical techniques.

The remainder of the book deals with more advanced topics.
The Lagrange equations, introduced in Chapter 4, provide a potent
tool -for solving problems in vibrations. Chapters 5 and 6 illustrate
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additional techniques and practical applications. Chapter 7 uses
matrix algebra to solve multi-degree-of-freedom systems. It may
serve as a foundation for studying vibration problems on the digital
computer. Mechanical transients and electromechanical systems are
discussed in Chapter 8 by the use of the Laplace transform method.
It is believed that transient study is sufficiently important to justify a
separate chapter in a course in vibrations.

Chapter 9 describes the application of the electronic analogue
computer in solving vibration problems, and it is regarded as an ex-
tension of Chapter 8 on analogue study. It is found that the opera-
tion of the computer can easily be grhsped by mechanical engineering
students, and it aids in their understanding of vibration phenomena.
The use of the analogue computer as a tool is presented in some
detail. Since laboratory work is essential for the understanding of the
capabilities of the computer, a list of suggested experiments is in-
cluded in Appendix A.

The material in this book has been used for a number of years
by different instructors in Vibrations I and II taught at the Michigan
State University. There is a laboratory section associated with each
of these courses. Chapters 1 to 3 and part of Chapter 9 are being
used for the first course, the remaining chapters for the second
course. Chapter 9 is used principally for the laboratory sections.
The analogue computer is used to supplement the vibration laboratory
instead of the digital because students can fully participate in the
experiments, only an elementary knowledge of electrical circuits is
‘required, and small-size analogue computers are relatively inexpen-
sive. Except for Chapters 1 to 3, the chapters are organized as inde-
pendently as possible, but without repetition. Thus, after the first
three chapters, the selection of topics can be very flexible.

To limit the scope of the book to systems described by linear
ordinary differential equations, certain topics, such as vibration of a
continuous medium, acoustics, and nonlinear vibrations, are purposely
omitted. Nonlinear equations, however, are briefly discussed in
Chapter 9.

.No attempt has been made to compile a complete bibliography
of the literature, which is very extensive. The authors, however, wish
to acknowledge their indebtedness to the writers who have con-
tributed to this field of study and to the authors of the texts listed as
references. The authors are especially thankful to Dr. C. U. Ip for
his valuable suggestions.
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I . INTRODUCTION

PRIMARY OBJECTIVES

The subject of vibration deals with the oscillatory motion of
dynamic systems. A dynamic system is a combination of matter which
possesses mass and whose parts are capable of relative motion. All
bodies possessing mass and elasticity are capable of vibration. The
mass is inherent in the body, and the elasticity is due to the relative
motion of the parts of the body. The system considered may be in the
form of a structure, a machine or its components, or a group of
machines. The oscillatory motion of the system may be objectionable,
trivial, or necessary for performing a task.

The objective of the designer is to control or minimize the vibration
when it is objectionable and to utilize and enhance the vibration when
it is desirable. Objectionable vibrations in a device may cause the
loosening of parts or the malfunctioning or eventual failure of a
machine. On the other hand, shakers in foundries and vibrators in
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4 INTRODUCTION

testing machines require vibration. The proper functioning of many
instruments depends on the proper control of the vibrational character-
istics of the devices.

The primary objective of our study is to analyze the oscillatory
motion of dynamic systems and the forces associated with the motion.
It should be remembered that the ultimate goal in the study of vibration
is to determine its effect on the performance and safety of the system
under consideration. The analysis of the oscillatory motion is an
important step toward this goal.

Our study begins with the description of the elements in a vibratory
system, the introduction of some terminology, and a discussion of
simple harmonic motion. These concepts will be used throughout the
text. Other concepts and terminology will be introduced in the
appropriate places as needed.

12. ELEMENTS OF A VIBRATORY SYSTEM

The elements that constitute a vibratory system are illustrated in
Fig. 1-1. They are idealized and called (1) the mass, (2) the spring,
(3) the damper, and (4) the excitation elements. The first three elements

are the parameters descriptive of the
physical system. For example, it can
be said that the given system consists

SP";i"S Da':P"’ of a mass, a spring, and a damper
Stati arranged as shown in the figure.
atic .. .
g -Mass Excitation Energy may be stored in the mass
equilibrium . . . .
position oT m force F()  and the spring and dissipated in the

damper in the form of heat. These

parameters are called the inactive

Fig. 1-1. Elements of a vibratory ~ OT passive elements. To simplify the

system mathematics involved in the treatment

of the subject, the passive elements are

assumed to be invariant with time. Energy enters the physical system

through the application of an excitation to the system. Hence the

excitation is called an active element, and its magnitude varies according

to a prescribed function of time. As shown in Fig. 1-1, an excitation
force is applied externally to the system.

Furthermore, the parameters are assumed to be “lumped” together

and are symbolized by the corresponding elements. Not all physical

Displacement x(7)



Sec. 1-2. ELEMENTS OF A VIBRATORY SYSTEM

systems have lumped parameters. For example, a coil spring possesses
both mass and elasticity. In order to consider it as a spring element,
either its mass is assumed to be negligible or an appropriate portion
of its mass is lumped together with the other masses of the system.
A beam has its mass and elasticity inseparably distributed along its
length. Hence the vibrational characteristics of a beam, or more
generally of an elastic body, can be studied by this approach only
if the elastic body is approximated by a finite number of lumped
parameters. This method, however, is a practical approach to the
study of some very complicated structures such as that of an air-
craft.

In spite of the limitations, the lumped-parameter approach to the
study of vibration problems is well justified for the following reasons:
(1) Many physical systems are essentially lumped-parameter systems.
(2) The concepts can be extended to analyze the vibration of elastic
bodies. (3) Many physical systems are too complex to be investigated
analytically as elastic bodies, and they are often studied through the
use of their equivalent lumped-parameter systems. (4) The assumption
of lumped parameters greatly simplifies the analytical effort required
to obtain a solution.

The mass element is assumed to be a rigid body. It executes the
vibrations and can gain or lose kinetic energy in accordance with the
velocity change of the body. Newton’s law of motion may be stated
as follows: The product of the mass and its acceleration is equal to
the force applied to the mass, and the acceleration takes place in the
direction in which the force acts. Work is force times displacement in
the direction of the force. The work done in changing the kinetic
energy of a mass is conserved. The kinetic energy increases if work is
positive and decreases if work is negative.

The spring element possesses elasticity and is assumed to be of
negligible mass. A spring force exists only if the spring is deformed,
such as the extension or the compression of a coil spring. Therefore
the spring force exists if there is a relative displacement between the
two ends of the spring. The work done in deforming a spring is
conserved and is equal to the strain energy stored in the spring. This
strain energy is often called the potential energy. A linear spring is one
that obeys Hooke’s law, that is, the spring force is proportional to the
spring deformation. The constant of proportionality, measured in
force per unit deformation, is called the spring constant k.

The damping element has neither mass nor elasticity. Damping
force exists only if there is relative motion between the two ends of the
damper. The work or energy input to a damper is converted into heat,



INTRODUCTION

and therefore the damping element is nonconservative. Many types of
damping are encountered in engineering, and most of them are hon-
linear. For example, the frictional drag of a body moving in a fluid
is approximately proportional to the velocity squared, but the exact
value of the exponent is dependent on many variables. Coulomb or
dry friction damping is a function of the normal force between the
bodies as well as the materials involved. The Coulomb damping force
is generally assumed independent of the relative velocity between the
sliding bodies. Viscous damping, in which the damping force is pro-
portional to the velocity, is called linear damping. The mathematics
for dealing with linear damping is relatively simple. Thus, viscous

Displacement x

AN

\"/L*p,,i M \ \__ Tmes

Fig. 1-2. Periodic motion

)

damping or its equivalent is generally assumed in engineering. The
viscous-damping coefficient ¢ is measured in force per unit velocity.

Energy enters a system through the application of an excitation
to the system. Figure 1-1 shows an excitation force applied to the mass.
The magnitude of the excitation varies in accordance with a prescribed
function of time. Alternatively, if the system is suspended from a
support, excitation may be applied to the system through imparting a
prescribed motion to the support. In machinery, excitation often
arises from the unbalance of the moving components. The vibrations
of a dynamic system under the influence of an excitation are called
Jorced vibrations. Forced vibrations, however, are often defined as
the vibrations that are caused and maintained by a periodic excita-
tion.

If the vibratory motion is periodic, the system repeats its motion
at equal intervals of time, as shown in Fig. 1-2. The time required for
the system to repeat its motion is called a period r, which is the time
required to complete one cycle of motion. Frequency f is the number



