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About Richard Feynman

Born in 1918 in Brooklyn, Richard P. Feynman received his Ph.D. from Princeton
in 1942. Despite his youth, he played an important part in the Manhattan Project at
Los Alamos during World War 1. Subsequently, he taught at Cornell and at the
California Institute of Technology. In 1965 he received the Nobel Prize in Physics,
along with Sin-Itero Tomanaga and Julian Schwinger, for his work in quantum
electrodynamics.

Dr. Feynman won his Nobel Prize for successfully resolving problems with the
theory of quantum electrodynamics. He also created a mathematical theory that
accounts for the phenomenon of superfluidity in liquid helium. Thereafter, with
Murray Gell-Mann, he did fundamental work in the area of weak interactions such as
beta decay. In later years Feynman played a key role in the development of quark
theory by putting forward his parton model of high energy proton collision processes.

Beyond these achievements, Dr. Feynman introduced basic new computational
techniques and notations into physics, above all, the ubiquitous Feynman diagrams
that, perhaps more than any other formalism in recent scientific history, have changed
the way in which basic physical processes are conceptualized and calculated.

Feynman was a remarkably effective educator. Of all his numerous awards, he was
especially proud of the QOersted Medal for Teaching which he won in 1972. The
Feynman Lectures on Physics, originally published in 1963, were described by a
reviewer in Scientific American as “tough, but nourishing and full of flavor. After 25
years it is the guide for teachers and for the best of beginning students.” In order to
increase the understanding of physics among the lay public, Dr. Feynman wrote The
Character of Physical Law and Q.E. D.: The Strange Theory of Light and Matter. He
also authored a number of advanced publications that have become classic references
and textbooks for researchers and students.

Richard Feynman was a constructive public man. His work on the Challenger
commission is well known, especially his famous demonstration of the susceptibility of
the O-rings to cold, an elegant experiment which required nothing more than a glass of
ice water. Less well known were Dr. Feynman's efforts on the California State
Curriculum Committee in the 1960's where he protested the mediocrity of textbooks.

A recital of Richard Feynman's myriad scientific and educational accomplishments
cannot adequately capture the essence of the man. As any reader of even his most
technical publications knows, Feynman’s lively and multi-sided personality shines
through all his work. Besides being a physicist, he was at various times a repairer of
radios, a picker of locks, an artist, a dancer, a bongo player, and even a decipherer of
Mayan Hieroglyphics. Pérpetually curious about his world, he was an exemplary
empiticist.

Richard Feynman died on February 15, 1988, in Los Angeles.



The Feynman Lectures on Physics,
Special Preface

Toward the end of his life, Richard Feynman's fame had transcended the confines of
the scientific community. His exploits as a member of the commission investigating
the space shuttle Challenger disaster gave him widespread exposure; similarly, a
best-selling book about his picaresque adventures made him a folk hero almost of the
proportions of Albert Einstein. But back in 1961, even before his Nobel Prize increased
his visibility to the general public, Feynman was more than merely famous among
members of the scientific community—he was legendary. Undoubtedly, the extraor-
dinary power of his teaching helped spread and enrich the legend of Richard
Feynman.

He was a truly great teacher, perhaps the greatest of his era and ours. For Feynman,
the lecture hall was a theater, and the lecturer a performer, responsible for providing
drama and fireworks as well as facts and figures. He would prowl about the front of a
classroom, arms waving, “the impossible combination of theoretical physicist and
circus barker, all body motion and sound effects,” wrote the New York Times.
Whether he addressed an audience of students, colleagues, or the general public, for
those lucky enough to see Feynman lecture in person, the experience was usually
unconventional and always unforgettable, like the man himself.

He was the master of high drama, adept at riveting the attention of every lecture hall
audience. Many years ago, he taught a course in Advanced Quantum Mechanics, a
large class comprised of a few registered graduate students and most of the Caltech
physics faculty. During one lecture, Feynman started explaining how to represent
certain complicated integrals diagrammatically: time on this axis, space on that axis,
wiggly line for this straight line, etc. Having described what is known to the world of
physics as a Feynman diagram, he turned around to face the class, grinning wickedly.
“And this is called THE diagram!” Feynman had reached the denouement, and the
lecture hall erupted with spontaneous applause.

For many years after the lectures that make up this book were given, Feynman was
an occasional guest lecturer for Caltech’s freshman physics course. Naturally, his
appearances had to be kept secret so there would be room left in the hall for the
registered students. At one such lecture the subject was curved-space time, and
Feynman was characteristically brilliant. But the unforgettable moment came at the
beginning of the lecture. The supernova of 1987 has just been discovered, and
Feynman was very excited about it. He said, “Tycho Brahe had his supernova, and
Kepler had his. Thenthere weren't any for 400 years. But now I have mine.” The class
fell silent, and Feynman continued on. “There are 10!! stars in the galaxy. That used to
be a huge number. But it's only a hundred billion. It’s less than the national deficit! We
used to call them astronomical numbers. Now we should call them economical
numbers.” The class dissolyed in laughter, and Feynman, having captured his
audience, went on with his lecture.

Showmanship aside, Feynman’s pedagogical technique was simple. A summation
of his teaching philosophy was found among his papers in the Caltech archives, ina
note he had scribbled to himself while in Brazil in 1952

“First figure out why you want the students to learn the subject and what you
want them to know, and the method will result more or less by common sense.”

What came to Feynman by “common sense™ were often brilliant twists that perfectly
captured the essence of his point. Once, during a public lecture, he was trying to
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explain why one must not verify an idea using the same data that suggested the idea in
the first place. Seeming to wander off the subject, Feynman began talking about
license plates. “You know, the most amazing thing happened to me tonight. I was
coming here, on the way to the lecture, and I came in through the parking lot. And you
won't believe what happened. | saw a car with the license plate ARW 357. Can you
imagine? Of all the millions of license plates in the state, what was the chance that |
would see that particular one tonight? Amazing!” A point that even many scientists
fail to grasp was made clear through Feynman’s remarkable “common sense.”

In 35 years at Caltech (from 1952 to 1987), Feynman was listed as teacher of record
for 34 courses. Twenty-five of them were advanced graduate courses, strictly limited to
graduate students, unless undergraduates asked permission to take them (they often
did, and permission was nearly always granted). The rest were mainly introductory
graduate courses. Only once did Feynman teach courses purely for undergraduates,
and that was the celebrated occasion in the academic years 1961 - 1962 and
1962 - 1963, with a brief reprise in 1964, when he gave the lectures that were to become
The Fevnman Lectures on Physics.

At the time there was a consensus at Caltech that freshman and sophomore students
were getting turned off rather than spurred on by their two years of compulsory
physics. To remedy the situation, Feynman was asked to design a series of lectures to
be given to the students over the course of two years, first to freshmen, and then to the
same class as sophomores. When he agreed, it was immediately decided that the
lectures should be transcribed for publication. That job turned out to be far more
difficult than anyone had imagined. Turning out publishable books required a
tremendous amount of work on the part of his colleagues, as well as Feynman himself,
who did the final editing of every chapter.

And the nuts and bolts of running a course had to be addressed. This task was
greatly complicated by the fact that Feynman had only a vague outline of what he
wanted to cover. This meant that no one knew what Feynman would say until he stood
in front of a lecture hall filled with students and said it. The Caltech professors who
assisted him would then scramble as best they could to handle mundane details, such
as making up homework problems. _

Why did Feynman devote more than two years to revolutionize the way beginning
physics was taught? One can only speculate, but there were probably three basic
reasons. One is that he loved to have an audience, and this gave him a bigger theater
than he usually had in graduate courses. The second was that he genuinely cared about
students, and he simply thought that teaching freshmen was an important thing todo.
The third and perhaps most important reason was the sheer challenge of reformula-
ting physics, as he understood it, so that it could be presented to young students. This
was his specialty, and was the standard by which he measured whether something was
really understood. Feynman was once asked by a Caltech faculty member to explain
why spin |/2 particles obey Fermi-Dirac statistics. He gauged his audience perfectly
and said, “I’ll prepare a freshman lecture on it.” But a few days later he returned and
said, “You know, I couldn’t do it. I couldn’t reduce it to the freshman level. That means
we really don’t understand it.”

This specialty of reducing deep ideas to simple, understandable terms is evident
throughout The Feynman Lectures on Physics, but nowhere more so than in his
treatment of quantum mechanics. To aficionados, what he has done is clear. He has
presented, to beginning students, the path integral method, the technique of his own
devising that allowed him to solve some of the most profound problems in physics. His
own work using path integrals, among other achievements, led to the 1965 Nobel Prize
that he shared with Julian Schwinger and Sin-Itero Tomanaga.

Through the distant veil of memory, many of the students and faculty attending the
lectures have said that having two years of physics with Feynman was the experience
of a lifetime. But that's not how it seemed at the time. Many of the students dreaded
the class, and as the course wore on, attendance by the registered students started
dropping alarmingly. But at the same time, more and more faculty and graduate
students started attending. The room stayed full, and Feynman may never have
known he was losing some of his intended audience. But even in Feynman's view, his
pedagogical endeavor did not succeed. He wrote in the 1963 preface to the Lectures: “1
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don’t think [ did very well by the students.” Rereading the books, one sometimes seems
to catch Feynman looking over his shoulder, not at his young audience, but directly at
his colleagues, saying, “Look at that! Look how I finessed that point! Wasn't that
clever?” But even when he thought he was explaining things lucidly to freshmen or
sophomores, it was not really they who were able to benefit most from what he was
doing. It was his peers —scientists, physicists and professors —who would be the main
beneficiaries of his magnificent achievement, which was nothing less than to see
physics through the fresh and dynamic perspective of Richard Feynman.

Feynman was more than a great teacher. His gift was that he was an extraordinary
teacher of teachers. If the purpose in giving The Feynman Lectures on Physics was to
prepare a roomful of undergraduate students to solve examination problems in
physics, he cannot be said to have succeeded particularly well. Moreover, if the intent
was for the books to serve as introd uctory college textbooks, he cannot be said to have
achieved his goal. Nevertheless, the books have been translated into 10 foreign lan-
guages and are available in four bilingual editions. Feynman himself believed that his
most important contribution to physics would not be QED, or the theory of superfluid
helium, or polarons, or partons. His foremost contribution would be the three red
books of The Fevnman Lectures on Physics. That belief fully justifies this commemor-
ative issue of these celebrated books.

David L. Goodstein
Gerry Neugebauer
California Institute of Technology April 1989
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Electromagnetism

1~1 Electrical forces

Consider a force like gravitation which varies predominantly inversely as the
square of the distance, but which is about a billion-billion-billion-billion times
stronger. And with another difference. There are two kinds of “matter,” which
we can call positive and negative. Like kinds repel and unlike kinds attract—
unlike gravity where there is only attraction. What would happen?

A bunch of positives would repel with an enormous force and spread out in
all directions. A bunch of negatives would do the same. But an evenly mixed
bunch of positives and negatives would do something completely different. The
opposite pieces would be pulled together by the enormous attractions. The net
resuit would be that the terrific forces would balance themselves out almost per-
fectly, by forming tight, fine mixtures of the positive and the negative, and between
two separate bunches of such mixtures there would be practically no attraction or
repulsion at all,

There is such a force: the electrical force. And all matter is a mixture of posi-
tive protons and negative electrons which are attracting and repelling with this
great force. So perfect is the balance, however, that when you stand near someone
else you don't feel any force at all. If there were even a little bit of unbalance you
would know it. If you were standing at arm’s length from someone and each of
you had one percent more electrons than protons, the repelling force would be in-
credible. How great? Enough to lift the Empire State Building? No! To lift
Mount Everest? No! The repulsion would be enough to lift a *‘weight” equal to
that of the entire earth!

With such enormous forces so perfectly balanced in this intimate mixture, it
is not hard to understand that matter, trying to keep its positive and negative
charges in the finest balance, can have a great stiffness and strength. The Empire
State Building, for example, swings only eight feet in the wind because the electrical
forces hold every electron and protor more or less in its proper place. On the other
hand, if we look at matter on a scale small enough that we see only a few atoms,
any small piece will not, usually, have an equal number of positive and negative
charges, and so there will be strong residual electrical forces. Even when there are
equal numbers of both charges in two neighboring small pieces, there may still be
large net electrical forces because the forces between individual charges vary
inversely as the square of the distance. A net force can arise if a negative charge of
one piece is closer to the positive than to the negative charges of the other piece.
The attractive forces can then be larger than the repulsive ones and there can be a
net attraction between two small pieces with no excess charges. The force that holds
the atoms together, and the chemical forces that hold molecules together, are
really electrical forces acting in regions where the balance of charge is not perfect,
or where the distances are very small.

You know, of course, that atoms are made with positive protons in the
nucleus and with electrons outside. You may ask: “If this electrical force is so
terrific, why don’t the protons and electrons just get on top of each other? If they
want to be in an intimate mixture, why isn’t it still more intimate?” The answer
has to do with the quantum effects. If we try to confine our electrons in a region
that is very close to the protons, then according to the uncertainty principle they
must have some mean square momentum which is larger the more we try to con-
fine them. It is this motion, required by the laws of quantum mechanics, that keeps
the electrical attraction from bringing the charges any closer together.
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There is another question: “What holds the nucleus together”? In a nucleus
there are several protons, all of which are positive. Why don’t they push them-
selves apart? It turns out that in nuclei there are, in addition to electrical forces,
nonelectrical forces, called nuclear forces, which are greater than the electrical
forces and which are able to hold the protons together in spite of the electrical
repulsion. The nuclear forces, however, have a short range—their force falls off
much more rapidly than 1/7%. And this has an important consequence. If a
nucleus has too many protons in it, it gets too big, and it will not stay together. An
example is uranium, with 92 protons. The nuclear forces act mainly between each
proton (or neutron) and its nearest neighbor, while the electrical forces act over
larger distances, giving a repulsion between each proton and all of the others in
the nucleus. The more protons in a nucleus, the stronger is the electrical repulsion,
until, as in the case of uranium, the balance is so delicate that the nucleus is almost
ready to fly apart from the repulsive electrical force. If such a nucleus is just
“tapped” lightly (as can be done by sending in a slow neutron), it breaks into two
pieces, each with positive charge, and these pieces fly apart by electrical repulsion.
The energy which is liberated is the energy of the atomic bomb. This energy is
usually called “nuclear” energy, but it is really “electrical” energy released when
electrical forces have overcome the attractive nuclear forces,

We may ask, finally, what holds a negatively charged clectron together (since
it has no nuclear forces). If an electron is all made of one kind of substance, each
part should repel the other parts. Why, then, doesn’t it fly apart? But does the
electron have “parts”? Perhaps we should say that the electron is just a point and
that electrical forces only act between different point charges, so that the electron
does not act upon itself. Perhaps. All we can say is that the question of what
holds the electron together has produced many difficulties in the attempts to form
a complete theory of electromagnetism. The question has never been answered.
We will entertain overselves by discussing this subject some more in later chapters.

As we have seen, we should expect that it is a combination of electrical forces
and quantum-mechanical effects that will determine the detailed structure of
materials in bulk, and, therefore, their properties. Some materials are hard, some
are soft. Some are electrical “conductors”—because their electrons are free to
move about; others are “insulators’—because their electrons are held tightly to
individual atoms. We shall consider later how some of these properties come about,
but that is a very complicated subject, so we will begin by looking at the electrical
forces only in simple situations. We begin by treating only the laws of electricity—
including magnetism, which is really a part of the same subject.

We have said that the electrical force, like a gravitational force, decreases
inversely as the square of the distance between charges. This relationship is called
Coulomb’s law. But it is not precisely true when charges are moving—the elec-
trical forces depend also on the motions of the charges in a complicated way. One
part of the force between moving charges we call the magnetic force. It is really
one aspect of an electrical effect. That is why we call the subject “electromag-
netism.”

There is an important general principle that makes it possible to treat elec-
tromagnetic forces in a relatively simple way. We find, from experiment, that the
force that acts on a particular charge—no matter how many other charges there
are or how they are moving—depends only on the position of that particular
charge, on the velocity of the charge, and on the amount of charge. We can write
the force F on a charge ¢ moving with a velocity v as

F = g(E+ v X B). (1.1

We call E the electric field and B the magnetic field at the location of the charge.
The important thing is that the electrical forces from all the other charges in the
universe can be summarized by giving just these two vectors. Their values will
depend on where the charge is, and may change with time. Furthermore, if we
replace that charge with another charge, the force on the new charge will be just
in proportion to the amount of charge so long as all the rest of the charges in the
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world do not change their positions or motions. (In real situations, of course, each
charge produces forces on all other charges in the neighborhood and may cause
these other charges to move, and so in some cases the fields can change if we replace
our particular charge by another.)

We know from Vol. I how to find the motion of a particle if we know the force
on it. Equation (1.1) can be combined with the equation of motion to give

%[(_1_:_:"2_';0;3;/_2] =F=gE+ v XB). (1.2)

So if E and B are given, we can find the motions. Now we need to know how the
E’s and B’s are produced. .
One of the most important simplifying principles about the way the fields are
produced is this: Suppose a number of charges moving in some manner would
produce a field E;, and another set of charges would produce E;. If both sets of
charges are in place at the same time (keeping the same locations and motions
they had when considered separately), then the field produced is just the sum

E = E + E, (L.3)

This fact is called the principle of superposition of fields. It holds also for magnetic
fields. .

This principle means that if we know the law for the electric and magnetic
fields produced by a single charge moving in an arbitrary way, then all the laws of
electrodynamics are complete. If we want to know the force on charge 4 we need
only calculate the E and B produced by each of the charges B, C, D, etc., and then
add the E’s and B’s from all the charges to find the fields, and from them the
forces acting on charge 4. If it had only turned out that the field produced by a
single charge was simple, this would be the neatest way to describe the laws of
electrodynamics. We have already given a description of this law (Chapter 28,
Vol. I) and it is, unfortunately, rather complicated.

It turns out that the form in which the laws of electrodynamics are simplest
are not what you might expect. It is not simplest to give a formula for the force that
one charge produces on another. It is true that when charges are standing still the
Coulomb force law is simple, but when charges are moving about the relations are
complicated by delays in time and by the effects of acceleration, among others.
As a result, we do not wish to present electrodynamics only through the force
laws between charges; we find it more convenient to consider another point of
view—a point of view in which the laws of electrodynamics appear to be the most
easily manageable.

1-2 Electric and magnetic fields

First, we must extend, somewhat, our ideas of the electric and magnetic
vectors, E and B. We have defined them in terms of the forces that are felt by a
charge. We wish now to speak of electric and magnetic fields at a point even when
there is no charge present. We are saying, in effect, that since there are forces
“‘acting on” the charge, there is still “something” there when the charge is removed.
If a charge located at the point (x, y, ) at the time ¢ feels the force F given by
Eq. (1.1) we associate the vectors E and B with the point in space (x, y, 2). We may
think of E(x, y, z, f) and B(x, y, z, f) as giving the forces that would be experienced
at the time ¢ by a charge located at (x, y, z), with the condition that placing the charge
there did not disturb the positions or motions of all the other charges responsible
for the fields. .

Following this idea, we associate with every point (x, y, z) in space two vectors
E and B, which may be changing with time. The electric and magnetic fields are,
then, viewed as vector functions of x, y, 2z, and ¢. Since a vector is specified by its
components, each of the fields E(x, y, 2, {) and B(x, y, z, 1) represent three mathe-
matical functions of x, y, z, and ¢.
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Fig. 1-1. A vector fleld may be
represented by drawing a set of arrows
whose magnitudes and directions indicate
the values of the vector fleld at the points
from which the arrows are drawn.
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Fig. 1-2. A vector fleld con be
represented by drawing lines which are
tangent to the direction of the fleld vector
at each point, and by drawing the density
of lines proportional to the magnitude of
the field vector.
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Fig. 1-3. The flux of a vector field
through a surface is defined as the
average value of the normal component
of the vector times the area of the surface.

It is precisely because E (or B) can be specified at every point in space that it is
called a “field.” A “field” is any physical quantity which takes on different values
at different points in space. Temperature, for example, is a field—in this case a
scalar field, which we write as T(x, y, z). The temperature could also vary in time,
and we would say the temperature field is time-dependent, and write T(x, y, z, 1).
Another example is the “velocity field” of a flowing liquid. We write v(x, y, z, ?)
for the velocity of the liquid at each point in space at the time ¢, It is a vector field.

Returning to the electromagnetic fields—although they are produyced by
charges according to complicated formulas, they have the following important
characteristic: the relationships between the values of the fields at one point and
the values at a nearby point are very simple. With only a few such relationships in
the form of differential equations we can describe the fields completely. It is in
terms of such equations that the laws of electrodynamics are most simply written.

There have been various inventions to help the mind visualize the behavior of
fields. The most correct is also the most abstract: we simply consider the fields as
mathematical functions of position and time. We can also attempt to get a mental
picture of the field by drawing vectors at many points in space, each of which gives
the field strength and direction at that point. Such a representation is shown in
Fig. 1-1. We can go further, however, and draw lines which are everywhere
tangent to the vectors—which, so to speak, follow the arrows and keep track of
the direction of the field. When we do this we lose track of the lengths of the
vectors, but we can keep track of the strength of the field by drawing the lines far
apart when the field is weak and close together when it is strong. We adopt the
convention that the number of lines per unit area at right angles to the lines is pro-
portional to the field strength. This is, of course, only an approximation, and it
will require, in general, that new lines sometimes start up in order to keep the
number up to the strength of the field. The field of Fig. 1~1 is represented by
field lines in Fig. 1-2.

1-3 Characteristics of vector fields

There are two mathematically important properties of a vector field which
we will use in our description of the laws of electricity from the field point of view.
Suppose we imagine a closed surface of some kind and ask whether we are losing
“something” from the inside; that is, does the field have a quality of “outflow”?
For instance, for a velocity field we might ask whether the velocity is always out-
ward on the surface or, more generally, whether more fluid flows out (per unit
time) than comes in. We call the net amount of fluid going out through the surface
per unit time the “flux of velocity” through the surface. The flow through an
element of a surface is just equal to the component of the velocity perpendicular
1o the surface times the area of the surface. For an arbitrary closed surface, the
net outward flow—or flux—is the average outward normal component of the
velocity, times the area of the surface:

Flux = (average nqrmal component)-(surface area). (1.4)

In the case of an electric field, we can mathematically define something
analogous to an outflow, and we again call it the flux, but of course it is not the
flow of any substance, because the electric field is not the velocity of anything. It
turns out, however, that the mathematical quantity which is the average normal
component of the field still has a useful significance. We speak, then, of the
electric flux—also defined by Eq. (1.4). Finally, it is also useful to speak of the
flux not only through a completely closed surface, but through any bounded sur-
face. As before, the flux through such a surface is defined as the average normal
component of a vector times the area of the surface. These ideas are illustrated in
Fig. 1-3.

There is a second property of a vector field that has to do with a line, rather
than a surface. Suppose again that we think of a velocity field that describes the
flow of a liquid. We might ask this interesting question: Is the liquid circulating?
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By that we mean: Is there a net rotational motion around some loop? Suppose
that we instantaneously freeze the liquid everywhere except inside of a tube which
is of uniform bore, and which goes in a loop that closes back on itself as in
Fig. I-4. Outside of the tube the liquid stops moving, but inside the tube it may
keep on moving because of the momentum in the trapped liquid-—that is, if there is
more momentum heading one way around the tube than the other. We define a
quantity called the circulation as the resulting speed of the liquid in the tube times its
circumference. We can again extend our ideas and define the “circulation” for any
vector field (even when there isn’t anything moving). For any vector field the
circulation around any imagined closed curve is defined as the average tangential
component of the vector (in a consistent sense) multiplied by the circumference
of the loop (Fig. 1-5).

Circulation = (average tangential component)-(distance around).  (1.5)

You will see that this definition does indeed give a number which is proportional
to the circulation velocity in the quickly frozen tube described above.

With just these two ideas—flux and circulation—we can describe all the laws
of electricity and magnetism at once. You may not understand the significance of
the laws right away, but they will give you some idea of the way the physics of
electromagnetism will be uitimately described.

1-4 The laws of electromagnetism
. The first law of electromagnetism describes the flux of the electric field:

The flux of E through any closed surface = the net ch::rge inside » (1.6)

where €, is a convenient constant. (The constant €g is usually read as “epsilon-
zero” or “epsilon-naught”.) If there are no charges inside the surface, even though
there are charges nearby outside the surface, the average normal component of E
is zero, so there is no net flux through the surface. To show the power of this
type of statement, we can show that Eq. (1.6) is the same as Coulomb’s law, pro-
vided only that we also add the idea that the field from a single charge is spherically
symmetric. For a point charge, we draw a sphere around the charge. Then the
average normal component is just the value of the magnitude of E at any point,
since the field must be directed radially and have the same strength for all points on
the sphere. Our rule now says that the field at the surface of the sphere, times the
area of the sphere—that is, the outgoing flux—is proportional to the charge inside.
If we were to make the radius of the sphere bigger, the area would increase as
the square of the radius. The average normal component of the electric field times
that area must still be equal to the same charge inside, and so the field must decrease
as the square of the distance—we get an “inverse square” field.

If we have an arbitrary stationary curve in space and measure the circulation
of the electric field around the curve, we will find that it is not, in general, zero
(although it is for the Coulomb field). Rather, for electricity there is a second law
that states: for any surface S (not closed) whose edge is the curve C,

Circulation of E around C = th (flux of B through S). (.7

We can complete the laws of the electromagnetic field by writing two corre-
sponding equations for the magnetic field B.

Flux of B through any closed surface = 0. (1.8)
For a surface S bounded by the curve C,

¢?(circulation of B around C) = gt' (Aux of E through S)

flux of electric current through S (1.9)
€o ’

+
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Fig. 1-4. (o) The velocity field in a
liquid. Imagine a tube of uniform cross
section that follows an arbitrary closed
curve as in (b). If the liquid were suddenly
frozen everywhere except inside the
tube, the liquid in the tube would circulate
as shown in {c}.
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Fig. 1-5. The circulation of a vector
field is the average tangential compo-
nent of the vector (in a consistent sense}
times the circumference of the loop.



