Fourth edition

Biochemistry

A Case-Oriented Approach

Ret Montgemery, Ph.D., D.Sc. Montet L. Dryer, Ph.D. Thomas W. Conway, Ph.D. Arthur A. Specter, M.D.

Biochemistry

. A Case-Oriented Approach

Rex Montgomery, Ph.D., D.Sc. Robert L. Dryer, Ph.D. Thomas W. Conway, Ph.D. Arthur A. Spector, M.D.

Department of Biochemistry, The University of Iowa College of Medicine, Iowa City, Iowa

Fourth edition with 289 illustrations

The C.V. Mosby Company

St. Louis Toronto London 1983

Preface

The fourth edition of this book contains significant new biochemical information while it retains material introduced in the three previous editions. New topics have also been added to the analysis of human diseases, to basic biochemical concepts, and, in the sections dealing with applications of these concepts, to analysis of health-related problems. More of the cases in this edition have been worked out for the reader. As in the other editions, many new clinical cases and discussions of the biochemical principles illustrated by them have been added. However, those clinical cases from earlier editions that served particularly well in teaching have been retained. A large number of case problems have been solved and reflect recent advances in many areas of biochemistry. More pertinent references to both solved and unsolved case problems have been included for the benefit of both student and teacher.

The fourth edition contains 13 rather than M chapters. On the basis of our teaching experiences we have moved cases from Chapter 14 of the third edition to appropriate parts of the other chapters, introducing the comprehensive nature of case problems earlier in the book. In the basic biochemistry sections of the text, more extensive discussion of such important topics as trace elements in nutrition, lipoproteins, glycosylated proteins, 2,6-bisphosphofructose, ion pumps, mascle contraction, inborn errors of metabolism, leukotrienes, dietary fat and atherosclerosis, hormone receptors, chromosomal structure, carcinogenesis, DNA repair mechanisms, and immunoglobulin gene rearrangements can be found. Complex figures have been broken down into more numerous, simpler ones for easier study and comprehension. Biochemical topics presented in the case problems are listed in the Table of Contents.

Aside from the case analyses, the biochemical content of the fourth edition continues to be self-standing, in contrast to the first two editions. Thus the book is appropriate for a one-semester course in human biochemistry. It is, however, organized in a manner less traditional than that of most textbooks, since significant biochemical information is incorporated into the solutions to the case problems associated with each chapter. The text thus continues to serve a dual function: first, to make students aware of biochemical principles and, second, to provide opportunities to use these principles in analyzing common diseases. We believe that the second goal is the ultimate objective of biochemical education for the health science student.

At first glance the chapter titles of this book are much like those of other biochemistry texts. The biochemical principles are needed to understand the chemical and molecular aspects of health science problems. The second part of each chapter amplifies these principles, sometimes adding others particularly relevant to the health-related problem at hand, and applies these facts and concepts to the stated solutions of health-related problems. While the purpose of the case presentations is to illustrate the application of biochemistry to health problems, students are often curious to know more about the physiologic or pathologic aspects of the clinical material. This curiosity can be satisfied by reading the references presented after each case. Generally, students realize that the purpose of the text is to teach biochemistry, to demonstrate why biochemistry is important in the health sciences, and to show how biochemical principles are involved in day-to-day professional practice. Experience has shown us that students grasp concepts more clearly when they see a relation between these concepts and their own professional goals. Learning seems also to be more enjoyable when the applications are made evident.

Selected clinical case descriptions and biochemical questions about them are provided with and without written analysis. Those without analysis, as well as a series of shorter additional questions at the end of each chapter, are meant to be solved by the students. Many of the questions can be answered with a knowledge of the basic biochemistry presented in the first portion of the chapter. Some cases and questions are more comprehensive. Sufficient references direct students to sources from which they can compose answers to questions that are unsolved in the main body of the text and that are identified by diamonds. Similarly, brief unsolved clinical problems are marked by diamond symbols (•), indicating that outside reading will be required to compose a suitable solution. These questions are included because it is imperative that students become accustomed to the method and value of bibliographic research. The knowledge gained by study of the principles in the first part of the chapter can be extended by independent study of other source materials.

We have separately compiled a set of model answers for all of the case problems presented here. Interested instructors may request a copy of these answers from the authors.

The format of this book allows considerable flexibility. For some students the language statements plus the solved case problems may be sufficient. Others may wish to use the unsolved case problems or the additional study questions. As in the past editions we have selected nutrition as the topic for the first chapter in order to introduce from the beginning the case-oriented method of study. Many students have been exposed to this subject in their everyday living and in previous schooling. Knowledge of the properties of proteins follows (Chapter 2), since this material is essential for principles presented in later chapters. Chapter 3 deals with enzymes, also vital for understanding subsequent concepts. Because errors of fluid and electrolyte regulation are such frequent components of numerous diseases, principles of acid-base balance are discussed in Chapter 4. Thus early introduction to these basic topics permits selection from a wide range of case-oriented discussions. The remaining chapters may be covered in virtually any order, but we have found the sequence presented here to be satisfactory. Each chapter has been kept reasonably limited and self-contained, but we have made an effort by cross-references to guide the student toward a holistic approach.

In our one-semester course, Chapters 1 through 13 are covered in a 14-week period for the most part, one chapter per week. Those that sometimes require a slightly longer time for completion are "Acid-base, fluid, and electrolyte control" (Chapter 4), "Carbohydrate metabolism" (Chapter 7), and "Hormonal regulation of metabolism" (Chapter 13). Weekly contact involves 5 lecture hours for the class as a whole and 2 hours of discussion and review in small groups. All 5 lecture hours are usually devoted to coverage of the basic biochemistry section of the particular chapter. In some instances, however, one of these lectures is employed to present greater amplification of some important biochemical feature taken from the clinical examples section of the text. For example, phenylketonuria in Chapter 6, diabetes mellitus in Chapter 7, and hyperlipidemia in Chapter 10 have been highlighted by special lecture time on recent developments. It is recommended that small-group discussions be devoted to the clinical examples section of each chapter. These discussions might begin with a general review of the clinical cases that have been solved in the text, in an attempt to strengthen correlation of that information with the basic biochemical principles enunciated in the earlier part of the chapter. Subsequently, students can be asked to present one or more of the cases as well as additional problems not worked out in the text, either as oral or as written presentations.

It is recommended that examinations be based entirely on the analysis of cases. We have employed questions requiring short answers, multiple choices, and brief calculations. Our examinations are largely designed to be machine graded. In all instances the questions should be based on clinical situations, real or not, designed to gauge the student's capacity to deal with applications of basic biochemistry.

The fourth edition benefits from continued refinement of this teaching program for students of medicine, a program now in its twelfth year at the University of Iowa. This

approach, which has also been used for students of dentistry, has been extended to include students in the physician assistant program. Elsewhere this book has been used in colleges of allied health sciences, medicine, nursing, osteopathic medicine, pharmacy, and veterinary medicine. In some instances it is used, as at Iowa, as the sole instructional source. In others it is used in association with a more classic text, as a source of enrichment in learning.

The third edition introduced the use of the International System of Units (SI) as an experiment, in view of the delay of its adoption by the health care institutions in the United States. We received no adverse reaction to this change. Therefore the use of SI units has been continued in the fourth edition with the exception of reintroduction of pressure units expressed in mm Hg; the SI equivalent unit in kPa is given in parentheses. Other more traditional units are also given in parentheses. It is our hope that students can learn either system but be prepared to communicate in the SI system. A more complete description of the SI system appears in Appendix E, and a table of the more common measures is contained inside the back cover of the book. We look on this editorial change as an experiment and will appreciate some expression of reader reaction to the continued use of SI units.

Past editions of this book benefited from advice and criticism of numerous friends and colleagues, whose efforts are reflected in this edition. We here express our deep appreciation to new friends, including B.J. Bergen, J.A. Buckwalter, J.F. Field, R.D. Feld, B.H. Ginsberg, M.L. Jennings, and K.L. Manchester.

Rex Montgomery Robert L. Dryer Thomas W. Conway Arthur A. Spector

Contents

Chapter 1

Chapter 2

Nutrition 1 Homeostasis 1 Body water 2 Principal food components 2 Proteins 2 · Lipids 3 Carbohydrates 4 Overall view of metabolism of principal dietary components 4 Lipids 5 Carbohydrates and amino acids 5 Krebs cycle and adenosine triphosphate 6 Modifications in response to stress 7 General nutritional requirements 8 Practical daily food plan 8 Recommended daily dietary allowances (RDA) 8 Energy requirements 9 Lipid requirements 11 Carbohydrate requirements 13 Protein requirements 13 Vitamin requirements 14 Mineral requirements 19 Special problems in nutritional maintenance 22 Parenteral nutrition 22 Total parenteral nutrition (hyperalimentation) 22 Gavage feeding 23 Weight changes 23 Clinical examples 25 Case 1 Ascorbic acid deficiency 25 Case 2 Obesity 26 Case 3 Vitamin A deficiency and night blindness 32 Case 4 Protein-caloric undernutrition in anorexia nervosa 34 Case 5 Obesity 36 Case 6 Ulcerative colitis 36 Case 7 Niacin deficiency and pellagra 36 Case 8 Adult celiac disease 37 Case 9 Vitamin D toxicity 37 Case 10 Kwashiorkor 38 Case 11 Vitamin B₁₂ deficiency 38 Case 12 Nutrition for burn patients 39 Case 13 Liquid protein diets 40 Case 14 Iron overload 40

Protein structure 42

Amino acids 42 Peptide bond 48

General properties of amino acids and proteins 42

Conformational segments of polypeptide chains 51

Protein conformation 52

Properties of proteins in solution 53

Ionic properties of amino acids, peptides, and polypeptides 55

Structural aspects of specific proteins 61

Plasma proteins 61

Fibrous proteins 66

Myoglobin and hemoglobin 70

Specific binding of molecules to proteins 78

Protein turnover 80

Genetic basis of protein structure 81

Clinical examples 83

Case 1 Subacute carbon monoxide poisoning 83

Case 2 Sickle cell anemia 84

Case 3 Hemochromatosis 88

Case 4 Rheumatoid factors in rheumatoid arthritis 92

Case 5 Oral manifestation of hemoglobinopathy 94

Case 6 Aspirin-induced alteration of human serum albumin 96

Case 7 Red blood cells and surgery involving a heart-lung bypass 96

Case 8 Insulin resistance 97

Case 9 Multiple myeloma 98

Chapter 3

Enzymes and biologic catalysis 100

What are enzymes? 100

Enzyme structure 101

Enzyme cofactors 101

Vitamins and coenzymes 103

Protein domains in enzymes 103

Your domains in enzymes 103

Nucleotide fold and affinity chromatography 104

Domains in membrane-bound enzymes 104

Enzyme and cofactor turnover 105

Enzyme classification 105

Intracellular location of enzymes 106

Detection of enzymes in intact cells 106

Distribution of enzymes 106

General enzyme properties 109

Enzyme environment and enzyme regulation 109

Active catalytic site 111

Proenzymes, or natural enzyme precursors 112

Isomeric enzymes, or isozymes 112

Enzyme specificity 113

Mechanism of enzyme catalysis 115

Catalytic mechanism of enzyme action 115

Nature of enzyme catalysis 116

Carboxypeptidase mechanism 116

Quantitative analysis of single-substrate enzyme kinetics 118

Analysis from concentrations and reaction velocities 119

Turnover number 120

Enzymatic activity 120

Kinetic analysis of enzyme inhibition 121

Noncompetitive inhibition 122

Two-substrate kinetics 123

Practical applications of enzyme inhibitors 125

Clinically important enzyme inhibitors 125

Coenzyme analogues as drugs 125

Enzyme regulation and control 126

Allosteric enzymes 126

Structure of allosteric effectors 127

Product inhibition 129

Feedback control 130

Constitutive and inducible enzymes 131

Regulation by covalent modification 131

Enzyme cascades 132

Adenylate cyclase and cyclic nucleotide-initiated cascades 133

Blood clotting 134

Summary 137

Integration of enzymes into metabolic pathways 138

Heme biosynthesis 138

Hemoglobin breakdown and bile pigment metabolism 141

Bilirubin metabolism and jaundice 145

Clinical applications of enzymes 146

Use of enzymes as reagents 146

Use of enzymes as labeling reagents 146

Immobilized enzymes 147

What is a valid enzyme assay? 148

Problems of enzyme assays 150

Clinical examples 151

Case 1 Creatine kinase and myocardial infarction 151

Case 2 Serum amylase in the diagnosis of pancreatitis 153

Case 3 Antibiotics as enzyme inhibitors 155

Case 4 Lead poisoning 157

Case 5 Thrombophlebitis, anticoagulants, and hemorrhage 160

Case 6 Acquired (toxic) methemeglobinemia, or toxic hemiglobinemia 165

Case 7 Acute pancreatitis 170

Case 8 Muscle injury 174

Case 9 Wilson's disease 175

Case 10 Unexplained increased serum creatine kinase MB isozyme activity in a patient with lung cancer 175

Chapter 4

Acid-base, fluid, and electrolyte control 177

Buffers 177

Bicarbonate buffer 180

Control of pH in the body 183

Respiratory control of blood pH 183

Transport of oxygen and carbon dioxide in blood 183

Renal regulation of pH, water, and electrolytes 186

Osmotic pressure 186

Transport across membranes 186

Kidney function 188

Reabsorption of ions and water 188

Renal threshold 190

Renal control of acid-base balance 191

Factors affecting bicarbonate concentration in blood 192

Mechanisms of H+ excretion 192

Summary of general movement of ions and water in the nephron 193

Regulation of volume and concentration of body fluids 193

Water distribution in the body 193

Electrolyte regulation 194

Diuretic agents 196

Metabolic and respiratory disturbances of acid-base balance 197

Gamblegrams 198

Respiratory acidosis 199

Respiratory alkalosis 199

Metabolic acidosis 199

Metabolic alkalosis 199

Mixed disturbances of acid-base balance 200

Clinical examples 201

Case 1 Narcotic overdose 201

Case 2 Idiopathic hyperventilation 202

Case 3 Diabetes and diabetic ketoacidosis 203 Case 4 Poliomyelitis 205 Case 5 Encephalitis 207 Case 6 Dehydration 209 Case 7 Cholera 211 Case 8 Emphysema 214 Case 9 Pulmonary embolism 215 Case 10 Pneumonia 215 Case 11 Formaldehyde poisoning 216 Case 12' Water balance in nasogastric feeding 217 Case 13 Pulmonary edema 217 Case 14 Hyponatremia 218 Case 15 Oxygen toxicity 218

Chapter 5

Energetics and coupled systems 221 Energy/changes in chemical reactions 221 Fundamental laws of energy flux 222 Free energy 222 Qualitative evaluation of reaction energetics 223 Standard state 223 Coupled reaction systems 223 Quantitative expressions of ΔG 224 Effect of concentration on oxidation-reduction reactions 228 Summary of energetics 228 Respiratory chain 229 Major components of the respiratory chain 229 Structural summary 234 Respiratory chains of the endoplasmic reticulum 234 Fatty acid desaturase of microsomes 236 High-energy compounds 236 Oxidative phosphorylation 238 Control of oxidative phosphorylation 238 Mitochondrial energy states 239 Concept of energy charge 239 Inhibition and uncoupling of oxidative phosphorylation 240 Structure of the mitochondrial inner membrane 241 Reconstitution experiments 243 Mechanism of oxidative phosphorylation 244 ATPases and ion pumping 245 General properties of some ion-pumping ATPases 245 Na+,K+-ATPase 246 Mammalian Ca++, Mg++-ATPase 247 Other means of mitochondrial Ca++ transport 248 Racker-Stoeckenius experiment 249 Muscle contraction and the myosin ATPase 249 Contractile proteins, myosin 251 Monomeric and polymeric actin 252 Tropomyosin 252 The basis of mechanical coupling: events of the contraction-relaxation cycle 252 Regulation of contractile tissues 253 Actin-based regulation 253 Myosin-based regulation 254 Summary of regulatory mechanisms 254

Sources of muscle energy 254

Clinical examples 256

Case 1 Hypophosphatemia 256

Case 2 Halothane intoxication 260

Case 3 Snake venoms as uncoupling agents 263

Case 4 Chronic alcoholism, death induced by the acetaldehyde syndrome 264

Case 5 Zellweger's disease (cerebrohepatorenal syndrome) 265

Case 6 Hypermetabolism 266

Case 7 Acute bacteremia 266

Case 8 Mental retardation with congenital methemoglobinemia 267

Case 9 Pyruvate kinase deficiency 268

Case 10 Failure of response to digoxin 269

Case 11 Chronic granulomatous disease 269

Chapter 6

Krebs cycle 271

Cellular location of the Krebs cycle 272

Nature of cycle components 272

Pyruvate decarboxylation 272

Regulation of the pyruvate dehydrogenase (PDH) complex 275

Condensing reaction 276

Isomerization of citrate 277

First decarboxylation 278

Second decarboxylation 278

Substrate-level phosphorylation 278

Final stages 279

Recapitulation of Krebs cycle energetics 279

Entry of amino acids into Krebs cycle 280

Transamination of amino acids 280

Entry of other amino acids into the Krebs cycle 283

Mechanism of methylmalonyl CoA mutase 283

Summary 283

Anaplerotic reactions 284

Mitochondrial compartmentalization 285

Nature of translocases 286

Representation of translocases 286

Metabolic regulation of translocases 288

Mitochondrial function in lipogenesis 290

Mitochondrial function in gluconeogenesis 291

Transfer of reducing equivalents 293

Shuttle systems 293

The transhydrogenase system 294

The closed road: why fat is not converted to glucose 295

Summary 297

Clinical examples 297

- Case 1 Congenital defect of pyruvate dehydrogenase (PDH) 297
- Case 2 Cirrhosis and alcoholism 303
- Case 3 Myocardial infarction 308
- Case 4 Phenylketonuria and pyruvate metabolism 311
- Case 5 Hepatic coma in late cirrhosis 312
- Case 6 Diagnostic problems resulting from laboratory methodologies 314
- Case 7 Granulomatosis and polymorphonuclear leukocytes 316
- Case 8 Stroke and cerebral ischemia 316
- Case 9 Mitochondrial myopathy 317
- Case 10 Mitochondrial metabolism in posthepatic jaundice 318
- Case 11 Citrate synthesis by isolated leukemia lymphocytes 319
- Case 12 Methylmalonic aciduria 319

Chapter 7

Carbohydrate metabolism 321

Nomenclature 321

Ring structures 323

Sugar derivatives 324

Glycosides 324

Disaccharides 324

Oligosaccharides and polysaccharides 325

Other naturally occurring sugar derivates 327

Digestion of carbohydrates 328

Absorption of carbohydrates from intestine 330

Rate of glucose absorption 330

Interconversion of D-glucose, D-fructose, and D-galactose 331

Utilization of D-glucose 332

Utilization of p-fructose 333

Utilization of D-galactose 335

Nucleoside diphosphate sugars and carbohydrate biosyntheses 337

Glycogen metabolism 338

Metabolic interrelationships 338

Control of glycogen metabolism 341

Role of D-glucose 6-phosphate and AMP 345

Abnormal glycogen metabolism 346

Glycolysis 346

Pathway of glycolysis 347

Energetics of glycolysis 352

Regulation of glycolysis 352

Gluconeogenesis 353°

Regulation of gluconeogenesis 355

Hormonal interaction to control glucose metabolism 355

Pentose phosphate pathway (hexose monophosphate shunt) 356

Regulation of the pentose phosphate pathway 359

Dehydrogenase deficiencies 361

D-Glucuronate and polyol pathways 361

Biopolymers containing carbohydrate 363

Glycoproteins 364

Proteoglycans (mucopolysaccharides) 370

Clinical examples 376

Case 1 Hypoglycemia 376

Case 2 Diabetes mellitus and obesity 379

Case 3 Pediatric gastroenteritis 384

Case 4 Galactosemia 387

Case 5 Von Gierke's disease 388

Case 6 Diabetes mellitus and dental care 389

Case 7 Hereditary fructose intolerance 389

Case 8 Diabetic ketoacidosis 390

Case 9 Anorexia nervosa 391

Case 10 Factitious hypoglycemia 391

Chapter 8

Lipid metabolism 393

Classification of lipids 393

Fatty acids 393

Fatty acid derivatives 399

Liposomes 404

Analytic methods in lipid chemistry 404

Saponification 404

Thin-layer chromatography (TLC) 404

Gas-liquid chromatography (GLC) 405

High-performance liquid chromatography (HPLC) 405

Digestion and absorption of dietary fat 405

Emulsification of dietary lipids 405

Hydrolytic enzymes 406

Absorption and reesterification 407

Secretion and utilization of dietary triglycerides 407

Medium-chain triglycerides 409

Lipid transport 409

Lipoproteins 410

Lipoprotein structure 410 ~~

Classes of plasma lipoproteins 411 Chemical and physical properties 412 Lipoprotein properties and metabolism 413 Lipoprotein lipase 417 Proteolipids 417 Free fatty acids (FFA) 417 Integration of lipid transport 417 Hyperlipoproteinemias 418 Adipose tissue 419 Fatty acid oxidation 421 Acyl CoA synthase 422 Acylcarnitine formation 423 B-Oxidation sequence 423 Other types of fatty acid oxidation 426 Energy yield of fatty acid oxidation 426 Regulation of substrate utilization 426 Ketone body oxidation 427 Fatty acid synthesis 428 Source of acetyl CoA 428 Carboxylation of acetyl CoA 429 Fatty acid synthase 429 Regulation of de novo biosynthesis 432 Differences between synthesis and oxidation 432 Chain elongation 433 Desaturation 433 Phosphoglyceride metabolism 435 Complete (de novo) synthesis 435 Partial synthesis 437 Phosphoglyceride degradation 439 Surfactant 439 Phospholipid exchange proteins 439 Alkyl ether and plasmalogen metabolism 440 Platelet-activating factor (PAF) 440 Sphingolipid metabolism 440 Sphingolipid degradation 440 Glyceride metabolism 441 Summary of lipases 441 Clinical examples 443 Case 1 Endogenous hypertriglyceridemia (type IV hyperlipoproteinemia) 443 Case 2 Hyperchylomicronemia (type I hyperlipoproteinemia) 445 Case 3 Acetyl CoA carboxylase deficiency 446 Case 4 Glucosylceramide lipidosis (Gaucher's disease) 448 Case 5 Carnitine deficiency 449 Case 6 Refsum's disease 450 Case 7 Obesity 452 Case 8 Steatorrhea 452 Case 9 Angina pectoris 453 Case 10 Lipogranulomatosis (Farber's disease) 453 Case 11 Type III hyperlipoproteinemia 454 Case 12 Milk for infant feeding 454 Case 13 Enzyme replacement therapy 454 Case 14 Dietary fat and cancer 455

Chapter 9

Amino acid metabolism 457

Dietary protein requirements 457
Digestion of proteins 458
Absorption of amino acids and peptides 461
γ-Glutamyl cycle 461
Genetic abnormalities of the γ-glutamyl cycle 463
Glutathione in detoxification 463

Biosynthesis of nonessential amino acids 464

Metabolism supporting amino acid biosynthesis 464

Biosynthesis of amino acids from dietary essential amino acids 469

Summary of the biosynthesis of amino acids 471

Amino acid catabolism 472

Fate of nitrogen atoms 472

Fate of carbon atoms—glycogenic and ketogenic amino acids 475

Amino acids as precursors of metabolites 485

Amine synthesis 485

Clinical examples 493

Case 1 Amino acid metabolism in starvation 493

Case 2 Glomerulonephritis 498

Case 3 Hartnup disease 501

Case 4 Cystinuria and cystine stones 503

Case 5 Inherited hemolytic anemia 506

Case 6 Hereditary hyperammonemia 506

Case 7 Methylmalonic acidemia 507

Case 8 Glutathionuria 508

Case 9 Homocystinuria 508

Case 10 Isovaleric acidemia 509

Case 11 Tyrosinemia 509

Chapter 10

Sterol and steroid metabolism 511

Steroid chemistry 511

Sterols 512

Cell membranes 513

Protein composition 513

Lipid composition 513

Carbohydrate composition 515

Fluid mosaic model of membrane structure 516

Phospholipid bilayer 516

Mosaic of proteins 516

Cholesterol in plasma lipoproteins 518

Cholesterol transport 518

Cholesterol exchange 518

Dietary cholesterol 519

Absorption 519

Digestion 519

Excretion 520

Bile acids 520

Synthesis of the primary bile acids 521

Metabolism 523

Secondary bile acids 523

Enterohepatic circulation 523

Cholelithiasis 524

Cholesterol metabolism 526

Ester formation 526

Ester hydrolysis 526

Biosynthesis 527

Transmethylglutaconate shunt 532

Ketone body synthesis 532

Regulation of cholesterol synthesis 533

Regulation of cholesterol levels in humans 536

Steroid hormones 537

Chemistry 537

Biosynthesis 540

Hydroxylation reactions 544

Transport in plasma 544

Metabolism 545

Conjugation and excretion 546

Clinical examples 547

- Case 1 Hypercholesterolemia 547
- Case 2 Hypercholesterolemia and atherosclerosis 549
- Case 3 \(\beta\)-Sitosterolemia 552
- Case 4 Spinocerebellar degeneration 554
- Case 5 Reduced urinary estrogen excretion 556
- Case 6 Selective hypoaldosteronism 557
- Case 7 Lecithin-cholesterol acyltransferase deficiency 557
- Case 8 Chronic adrenal cortical insufficiency 558
- Case 9 Gallstones 558
- Case 10. Atherosclerosis 559
- Case 11 Cerebrotendinous xanthomatosis 560
- Case 12 Duchenne muscular dystrophy 560
- Case 13 Dietary therapy of hypercholesterolemia 560

Chapter 11

Nucleic acids and nucleotides 562

Nucleic acids 562

Nomenclature and hydrolysis products 563

Cellular location of DNA 565

Cellular location of RNA 567

Structure of the nucleic acids 567

Digestion of dietary nucleic acids 571

Biosynthesis of purine and pyrimidine nucleotides 572

Folic acid functions 572

Purine nucleotide synthesis 576

Pyrimidine nucleotide synthesis 579

Pyrimidine analogues 581

Purine analogues 581

Conversion of analogues to analogue nucleotides 581

Deoxyribonucleotide synthesis 582

Thymidylate synthesis 583

Biosynthesis of nucleotide-containing coenzymes 584

Catabolism of nucleotides 585

Purines 585

Pyrimidines 586

Clinical examples 588

- Case 1 Gout 588
- Case 2 Tropical sprue 592
- Case 3 Defect in synthesis of B₁₂ coenzymes 595
- Case 4 Adenosine deaminase in immunodeficiency 597
- Case 5 Orotic aciduria 599
- Case 6 Excessive purine synthesis in gout 600
- Case 7 Lesch-Nyhan syndrome 600
- Case 8 Chemotherapy in treatment of breast cancer 602
- Case 9 Methotrexate treatment of adenocarcinoma 602
- Case 10 Folate deficiency in alcoholism 603
- Case 11 Purine nucleoside phosphorylase deficiency 603
- Case 12 Adenine phosphoribosyltransferase deficiency 604

Compter 12

Nucleic acid and protein biosynthesis 606

Functional roles of DNA 606

Genetic material 606

The "central dogma" 607

DNA synthesis 607

Molecular basis of mutation 613

DNA repair 615

Chemical carcinogenesis 616

Sequence analysis of DNA 617

RNA synthesis: expression of the genetic material 620

Operons and control of RNA synthesis 623

Transfer and ribosomal RNA synthesis 624

Protein biosynthesis 628

Aminoacyl-tRNA synthetases 628

Ribosome: site of protein synthesis 629

Polyribosome 630

Initiation of protein synthesis 631

Messenger RNA binding to ribosomes 633

Protein chain elongation 633

Termination of protein synthesis 634

Posttranslational processing of secretory proteins 634

Antibiotics and protein synthesis 635

Genetic code 635

Synthesis of specific proteins 637

Immunoglobulins 637

Virus replication 638

Genetic analysis of human disease 639

Classification of genetic diseases 640

Cytogenetic diseases 641

Clinical examples 641

Case 1 Xeroderma pigmentosum 641

Case 2 Acute lymphoblastic leukemia 643

Case 3 B-Thalassemia 646

Case 4 Systemic lupus erythematosus 649

Case 5 Duchenne type muscular dystrophy 650

Case 6 Diphtheria 651

Case 7 Transmission of herpes simplex virus 651

Case 8 Blastic chronic meylogenous leukemia 652

Chapter 13

Hormonal regulation of metabolism 654

Nature of hormones 654

Definition of a hormone 654

Endocrine glands 655

Neurotransmitters 655

Regulation of hormone secretion 656

Receptors 657

Prohormones 658

Mechanisms of hormone action 659

Adenylate cyclase mechanism 659

Other hormones that regulate adenylate cyclase 662

Guanylate cyclase and cGMP 663

Induction of protein synthesis 664

Hypothalamic regulatory hormones 665

Chemistry 666

Adenohypophyseal hormones 667

Somatotropin (SH) 667

Thyrotropin (TSH) 668

Adrenocorticotropin (ACTH) 668

Gonadotropins (FSH and LH) 668

Prolactin (PRL) 669

Melanotropin (β-MSH) 669

Neurohypophyseal hormones 669

Oxytocin 669

Vasopressin 669

Neurophysins in transport of oxytocin and vasopressin 670

Thyroid hormones 670

Biosynthesis of T₃ and T₄ 671

Plasma transport 671

Metabolic effect 671

Parathyroid hormone, calcitonin, and vitamin D 672

Parathyroid hormone 672

Calcitonin 673

Vitamin D 673

Calcium balance and calcification 674

Calmodulin 674

Pancreatic hormones 675

Insulin 675

Glucagon 679

Adrenal hormones 680

Epinephrine and norepinephrine 680

Corticosteroid hormones 681

Sex hormones 683

Testosterone 683

Estrogens 683

Progesterone 684

Hormonal control of the menstrual cycle 684

Placental hormones 685

Enteric hormones 686

Gastrin 686

Secretin 686

Cholecystokinin-pancreozymin 686

Gut glucagon 687

Candidate hormones 687

Hormone-related secretions 687

Melatonin 687

Prostaglandins 688

Leukotrienes 697

Growth-regulating polypeptides 697

Analgesic pituitary polypeptides 698

Clinical examples 700

Case 1 Hyperparathyroidism 700

Case 2 Insulinoma 701

Case 3 Hyperthyroidism 702

Case 4 Cushing's syndrome 703

Case 5 Rickets type II 705

Case 6 Psoriasis 707

Case 7 Bronchial asthma 707

Case 8 Zollinger-Ellison syndrome 708

Case 9 Pituitary insufficiency 708

Case 10 Follicle-stimulating hormone deficiency 709

Case 11 Primary aldosteronism 709

Case 12 Phosphate depletion syndrome 710

Case 13 Leprechaunism 710

Case 14 Thyroid storm 711

Abbreviations 713

Chapter 1

Nutrition

Objectives

- 1 To analyze the biochemical role of a proper diet in maintaining homeostasis
- 2 To interpret the different dietary demands that result from alterations in work load, age, and normal physiologic conditions
- 3 To interpret the metabolic basis of some nutritional diseases

In 1980 the average resident of the United States ate 1420 lb of food. An average adult maintains a fairly constant body weight in spite of consuming six to seven times that weight of food each year. For this state of equilibrium to be maintained, energy must be supplied to satisfy the demands of the total body requirements, which include tissue maintenance. In other cases food must also provide for growth, as in children and in pregnancy. These demands vary, depending on the work load and environment. They will change with age and physiologic state. Thus the needs of a hospitalized person will likely change when he or she returns to health, and those of an athlete in training will be different. The nutritional needs of a person nearing retirement also differ from those of an adolescent.

Imposed on these variations are those of biologic individuality. The so-called average 70 kg man is not represented by any one person. Everyone is different, and nutritionally this is expressed at all biochemical and physiologic levels. For example, there are differences in the digestion and absorption of food, the supplementation of essential nutrients by the gastrointestinal flora, the transport of food to the cells, the uptake of the nutrients across the plasma membrane of the cells, and the rate of waste elimination. However, the physiologic and biochemical regulatory mechanisms, responding to all these individual factors, arrive at an equilibrium for each person that is recognized as health. In some diseases, either genetic or acquired, the resulting nutritional deficiencies of the cells cannot be overcome without external assistance.

Like all other living systems, humans survive only by means of a continual energy flux. In the broadest sense, nutrition provides the body with needed energy and essential constituents that cannot be synthesized de novo. Sound nutrition depends on a proper dietary regimen, or food intake. This must include the six major components of the diet, carbohydrates, proteins, fats, vitamins, minerals, and water. Foods often contain non-nutritive components that, together with intestinal bacteria and waste materials manufactured by our cells, comprise excreta in the form of sweat, urine, and feces.

Homeostasis

An organism as complex as the human body is an ordered aggregation of cells. Each cell obtains the nutrients essential for its well-being from the circulating extracellular interstitial fluid in which it is bathed. This same fluid also serves to remove waste products excreted from the cell. The composition of living cells is remarkably constant so long as the interstitial fluid is normal.

The interstitial fluid represents the end of a transport system through which the blood and lymph exchange materials in the external environment with those in the cells. Thus nutrients are brought to the cells from the gastrointestinal tract and oxygen is brought from the lungs while waste products are excreted in urine, feces, and expired air. Such transport in higher animals is subject to variations in load, since surges of nutrients arise from intermittent food intake. The body reacts to restore the concentration of the extracellular fluid constituents to normal and thus maintains the environment of the cells rela-