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DATA MANAGEMENT FOR INTERACTIVE GRAPHICS

Graphice technology has aslways been bedevilled by particularly acute
problems of data structuring and storage. Solutions drawn from conven-
tional database technology have not generally met the unique requirements
of graphics systems, but new solutions have been evolved. The paper
describes the latest developments in data design for increased program-
mer productivity and efficient operation, with underlying adventages to
users.

INTRODUCTION - THE DATA

Before we can understand how to manage any resource we must have a clear perception
of what it is, and how it is used. The data used for interactive graphics has a o
number of features which combine to distinguish it from other data. These features
are as follows:

1 Its intimate relationship with program structure.
2 The complexity, variety and unpredictability of its access paths.

3 The high performance of algorithms and accesses which are demanded by ergonomic
. considerations.

4 The relationship it may have to large bodies of application-related data.

These features are listed in order of importance in the way they- influence the data

management task, and require us to develop diffefeng'techniques from those used in,

say, conventional database management. Other features which may be of importance in
a particular application are:

e The volume of data involved
e The longevity or transience of the data.

These various features will now be discussed to illustrate the nature of the data being
processed. ‘

CONVENTIONAL DATABASE STRUCTURE

In many applications, where significant volumes of data are handled, the data structure
may be designed with little cognisance of the programs and algorithms which are to

be applied to it. 1In these circumstances the data relates closely to.the perceived
structure of the relevant objects in the real world. Once this perception has been
realised and identified, then the logical structure (which in this case is the prg:
dominant structure) can be defined to reflect that perception (001F. Even in that
context the task is not always straightforward (002) but it is a possible and practic-
able approach in, say, business and administration systems for the following reasons:

1 The loss in efficiency and speed of response for individual pPrograms engendered by
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this approach is more than outweighed by the economic gain of the improved planning
of system construction and the adaptability to change (data independence) so

achieved.

2 The recognition of the essential entities and relationships has evolved over many
years, and they are largely tangible and easily visualised (but see (001)).

The programs then cluster around this .data, and are defined in terms of it, taking

a subsidiary role and implementing operations which reflect events in the modelled
world, or generating reports and extracts of data to correspond to requests for data.
Recent interest (003,004,005) in the relationship between software engineering and
database design shows the important role the specification of the.data structure has

in determining the form and development of the total software system. This is not a
trivial role, as the control and organisation of the software is usually a major
component of the cost of such systems and is certainly critical to tﬂe system's success.

GRAPHICS DATA AND PROGRAM STRUCTURE

The data and program structure -in a graphics system may be seen as a marked contrast
to the conventional system just described. Predominant here are the programs used to
implement operations on the data. This is exemplified by the plethora of papers on
hidden-line-removal algorithms, or by the researches of workers such as Braid and
Forrest. It proves sufficiently difficult to devise algorithms - which are adeguate
in performance and accuracy - to implement operations on two and three dimensional
objects, even though the operations are well known and easily specified. In devising
these algorithms, significant gains may be made by using appropriate data and data
structures. Thus, often the data structure used may be subservient to the algorithms
and programs implementing the graphics system.

Further, the implementation of this software is a major component of the cost of the
graphics system, and getting it to perform correctly and satisfactorily is a substan-
tial challenge to the implementors. If their task is made more difficult by an

imposed inappropriate data structure*, the difficulty may become insuperable. Certainly
the time to complete the task will be extended, and the performance of the algorithms
impaired. If the complexity of the programs is increased due to a cumbersome interface
to a data handling package, then in the worst case a threshold in complexity may be
reached making it impossible ever to debug the program completely. Even if these

very worst effects are avoided, the time, cost, performance and reliability of the
software will be adversely affected. As this is an important factor in data management
we will return to this issue later in the paper.

An example of a data structure, which is typical of graphics applications, is taken
from a paper by Braid and Hillyard (006) and reproduced in Figure 1.

In this example the data structure definition language is that of ALGOL 68 (007).
Similar data structures can be defined in PASCAL (008) and in many other languages.
Indeed they can be written in the new FORTRAN 7 standard (009) and in the proposed
language ADA (010).

In a survey of a number of programs recently conducted by IBM (011), in a screen-based administrat-
ive system, 60% of the code dealt with interfacing to the display, 25% with interfacing to the data-
base management system and 15% with implemerting the application's algorithm.
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struct (real x, y, z),

h

mode vector

mode trans = struct (ref matrix tm, # pointer to 4 x 4 matrix #

ceeas ) # other fields omitted #
mode curve = struct (int ck, # curve type #

ref [ 1 real cf), # equation coefficients #
mode surf = struct (int sk, # surface type #

ref [ ) real sf) # equation coefficients #
Figure l: Simplified part of a data structure used for graphics

Looking at that fragment of data structure definition we may observe the following:

1 The object system modelled is not part of the real world. Vectors, transformation
matrices, curves and surfaces are all abstractions which have been chosen to model
real objects. The abstraction step for which the tools of data modelling are being
developed has already been taken.

2 The use of ref here is an important step in partitioning the definition and/or in
specifying semantic information. The ref matrix allows the details of the repres-
entation of a matrix to be specified elsewhere, avQiding distracting detail here
and possibly postponing a decision to a more approériate moment, or localising it
in a more appropriate site. The use of ref [ ] real (a reference to an array of
reals) may also be allowing the localisation of instances of the parameters of a
curve, so that the structure may indicate that two or more curves (or surfaces),
have the same equation (see Figure 2). '

3 The programmer is using references and
arrays. Constructs, which typically,
are not well supported by traditional
database’systems.

As a further example, consider another ‘\\\\\!L ‘/////’

fragment of the declarations used by

Braid and Hillyard, shown in Figure 3. Equation of
a curve

Curve 1 Curve 2

Examining Figure 3 the reader may note

the following:
9 Figure 2: Two curves may share same

equation

1 The predominance of reference compon-

ents which point to or name other data objects.

2 The use of previously defined data types, such as vector, instances of which may
exist, both in their own right, and as vart of a larger data object.

3. The variety and complexity of data traversal paths which are provided, e g to
scan the edges of a face, the edges around a vertex, the faces around a vertex,
the vertices around a face, the instances in an object, and the instances in whiéh
an object is instanced.

We may be sure that these features are important. For example, consider the preponder-
ance of reference variables. They have clearly proved a useful modelling tool other-
wise the programmer would not have described his data that way. Some of the semantics

we
wm
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" mode object = struct (int ni, #no of times an object is
: - instanced#
ref inst bi, #first of chain of Tnstances
. in the object#
ref face bf, #a face of_quebt#-
ref edge be, #an edge# ‘
ref vertex bv), #a vertex#
mode inst = struct (ref object ib, #object. instanced#
iw, " #object -containing instance#
ref trans it, #transformation applied to
- iqstance#
ref inst ii), #next in instance chain of iw#
mode edge = struct (ref vertex epv,env, #vertices -at end of edged - _
ref face epf,enf, #faces on either side of edge#
ref edge epcw,epcc,encw,encc, #winged edges#
ref curve ec), #equation of curve of edge#
mode face = struct (ref edge fe, #an edge of the face#
ref surf fs), #equation of surface of face#
mode vertex = struct (ref edge ve, #an edge of the vertex#
. vector vs); #vertex coordinates#
Figure 33 A further- fragment of, the data description shown in Figure 1

of ‘these references are captured in tne definition, others are not. For exémple, the
type of the referend is identified, and its uniqueness and existence implied, but the
paths which form loops, or those which form inverses of pné_another are not. At the
same time, the programmer uses this construct freely, as he believes. the task of find-
ing the referend (dereferencing), given the reference, to be of low cost. They are
central to the performance of the algorithue’, and implement the multiplicity of paths
they use. One might prefer it if'programs.did not’ contain such structures. The
proliferation. of references permits the construction of complex structures, prone to
error, and liable to subtle faults which may not easily be revealed or repaired. Some
can be avoided by other constructs (012) and it may be possible, using data abstract-
ions, to constrain the pointer structures to have appropriate safe structures, without
loss of efficiéncy (013%) However, at present, these are avenues of research, and
whatever_its outcome, ghe pointer or reference is at present, and will probably remain,
an important programming tool. A;l ve can expect is that its use will become more

discipl;ned<leéding to more rgliable soféware.

In sﬁmmary, we have looked at the data.to be managed, and have observed the following:
1 The predominance and significance of reference variables.

2 The use of a wide range of data types, which are extended and nested.

3 The use of a data definition language to define the data, (but without the strong
binding of the permitted operations to those types which ought to be present)

4 The provision of complex traversal paths through the data, upon‘which algorithms
depend for their efficiency.

5 The task of defining this data is not one of ‘modelling reality’.

h
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THE OPERATIONS ON GRAPHICS DATA

Having considered what is to be managed, it is necessary to consider what is happening
to that data, to make it need managing.

The total set of operations on the data can be divided into four groups as follows:

1 Creation.

2 Manipulation.
3 Storage.

4 Termination.

These operations interact with the operations carried out by a user. The user, typically
an engineer, arrives at the workstation, and indicates to the system that he wishes to
start or resume a task, and indicates his area of interest. Typically, the user is
working in the context of his own and others' previous work, so the system assembles
some subset of the data generated by that previous work. The user then manipulates
that data creating more, and finally concludes the task and saves cr extracts the
relevant data he has generated. Although the computer may operate on the task almost
indefinitely, the user does not have this stamina. He may tire, lose concentration,
need to consult references, think, or fulfil other commitments. Thus it is necessary
for him to be able to leave off a task and return to it. When using graphics, some
workstations may be more suited to one part of the task, and some to another, they

may be on different machines supported by different software. Thus the task may be
started on one machine and thaen resumed on another. As with any other software system,
some of the programs will always be undergoing development, change or repair.

Thus the task of maintainring the data needs to be stable over a number of changes.

The creation of the data may be an absolute creation, as when a user draws a new arc

on a diagram, or it may be that data is brought to the machine from some external system,
a component supplier's database or another data source within the'company. Once created,
the data would normally be manipulated by the operations available within the programm-
ing language of the applications and graphics software. Storage is often achieved in
present day systems by translating the data to and from textual form or othér alien
representation. This is highly inefficient in a number of ways:

1 The programs which perform the translation have to be written, maintained and
accommodated in memory.

2 The translation process has to be applied to all of the data before useful processing
can commence. This is often wasteful as only a small part of the data may be
touched in one session, before the translatipn is reversed, and hence there is a
redundant wastage of both instructicns execufed, and data transferred.

3 Channel or communication resources are wasted.

This process of data traaslation for storage is, however, quite prevalent as it does
also have a number of advantages as follows:

1 The stored data may be read, or created by hand which 1s useful during system
development.

2 The necessary machine and software independence is assured.
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3 It is intrinsically simple, and leads itself to beiné a clear 1n;erféce between

various programs.

The final point is perhaps the most important, as it has a significant effect on the
speed of implementation and-the reliability of the final product. (Techniques for
precisely defining the allowed syntax and semantics for a text are well known and it
is easy to build'programs for checking that the specification.is met. )

Finally, the termination of the ‘data is associated with sémé user's finishing actions.
Temporary and support data may be simply deleted and lost. The importqnt'data will,
however, be passed on to other processes or an archival store.. This usually involves
a further translation and transmission to a central engineefing database.

These various translations to and from a storage format to the 'final' data form, and
from some 'source' data form, may be viewed as overheads of the Bystem. On the other
hand, those to and from the external format may be looked upon as an investment. It

is usual for the data to be held as a central model, perhaps of an object being designed
(such as an aircraft, hcspital or ship) or of an object being monitored and controlled
(such as in air traffic control or a power station). This mode1-w111 be organised

for a variety of uses, and will contain much data that is not relevant to graphical
interactdon It is,vghe:efpfe, very unlikely that this data will be in an optimum,

or even suitable, form for Any interactive graphics operations. The translation, at

the outset, Qf data which is only relevant to a graphics task into a form optimal for
the graphics application, is then an investment yielding savings or performance gains
during the graphics sessions. It is important that this investment is not squandered

by translating data which is not needed. Appropriate techniques are therefore required
to specify and obtain the relevant data, at the start of the task. It is also necessary
to provide a means of incrementally obtaining supplementary data during the task,
otherwise the user will 'over-order' to ensure he has everything he might need.

In summary we see thay the following operations need support:

Creation of data structures.’

Translation to and from more general data structures.
Program-oriented data manipulation.

Medium term storage or persistence of data. \

- oW N

SOME SYSTEM CONSIDERATIONS

Scale

We have viewed the extracted data for one user's task as a separate entity. If it is

a separate entity we may exploit this. First, note that there is a limit to the com-
plexity of a task one person can undertake. Ease of collecting data, and gtarting new
tasks will encourage that person not to claim or hold significantly more:- data than he
can effectively use. Consequently this puts an upper bound of a few megabytes on the
amount of data that need be managed at one time. 1In fact,‘in a recently developed
system for aircraft geometry design, the typical volume of active data was less than

a megabyte, and rarely exceeded quarter qf a megabyte. The most coppiex case envisaged,
when the undercarriage mechanism was Sgihg designed, only just reached a megabyte.
Consequently, much simpler techniques, such as mapping the data into the program's
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address space are applicable here, although they are not applicable in conventional
database work. :

Concurrency

The fact that a user is modifying data through a high bandwidth interactive graphics
terminal, has significant consequences. First, it is inappropriate for two people to
attempt to do this to the same data simultaneously. They are liable’ to confuse or
mislead each other if they do, and get into situations which are perilously inconsistent.
It is unlikely they can effectively cooperate on a common task. Hence, provision of
concurrent mechanisms at this level is inappropriate. They must be dealt with at a
higher level, corresponding to the management decisions regarding allocation of tasks,
and they must be enforced as the data is extracted for graphical processing from the
central (engineering) database, and corresponding to the authorisation process, as it
is returned afterwards. This corresponds closely to the practice that has existed in
many engineering companies of controlling the access to, copying of and amendment to
drawings held in a central repository, but withdrawn for various projects to different
drawing offices.

Integrity and backtracking

.Secondiy, this use of the graphical interactive tools leads to massive and sweeping

changes to data. For example a few fundamental points or dimensions are changed on a
drawing, and all the other points and curves which are constructed from them are changed.
This invalidates the assumptions on which many database management systems base their
integrity policies. They usually assume that only small parts of the data will be
changed in a sequence of transactions, and therefore store before-images (copies of

the original pages or records of data) to permit recovery to the previous state. The
user at an interactive graphics system certainly needs to be able to reverse his
operations, as he and his machines are just as prone to error as the conventional
database user. But the high rate and extensive scale of changes possible with inter-
active graphics may make before-images entirely uneconomic. One alternative is to
permit return only to the start of the task. This costs little, as in most systems

the initial data is still available from its external source, or in its storage form.
With storage forms, the task can be suitably punctuated by the user to preserve critical
states. With even less effort by the user, and with lower cosdts in machine cycles,
copies of the data in its graphical form may be kept from time to time. With the limit
in scale -of the data, this is quite practical, and the cost is decreasing with decreas-
ing memory and backing store costs. A further alternative is being ihvestigated by
Neil Wiseman (014), which is to provide an inverse for every high-level operation on
the graphical model. A log of these operations can then be kept, and it can be run -
backwards to retrace steps in the design. This only helps with human failure, and not
with software or equipment failure.

Recover Y

As an individual designer is probably working with any one set of graphical data, a
failure of his system is less critical for a company than is a loss of data and system
crash on a central database, say supporting a large transaction processing load.

{(This may not seem true from the viewpoint of the designer!) Consequently the speed
with which the data can be recovered, and with which a roll-forward to the last
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quiesc;nt state of processing can be achieved, is less critical., It is therefore
usual to invest less heavily in recovery data and procedures in the graphics applica-
tion. This is important, as such procedures are expensive and impede performance.
Dispensing with some of them usually makes a more responsive system possible, which
is probably of much greater significance to the designer as equipment fails only
rarely! h

Consistency checking

In conventional database applications, checking. the data as it .is inpu@ (validation)
and checking the stored data for correctness ({(consistency checking and audit trails)
are frequently important. At the interactive graphics terminal it is less easy or
less appropriate to apply such checks because:

1l The consistency constraints involved are much more complex.

2 Intermediate states which must occur as the model 1is being changed are often
inconsistent.

3 Gross errors, which are easily detected by validation, are usually conspicuous
on the displayed picture.

Consider each of these reasons in turn. The extra complexity comes from the mechanical
.nature of much that is shown on the screen. The following are examples:

e The intersection of the projection of these two lines must be at the centre of
that circle

® These two parts must move independently so that they never collide
e All these parts must be machinable

® No subnetworks of this circuit may be isolated subgraphs

. -
e No two areas on this mask may be within 1.5\ of one another.

The examples are legion, diverse, often difficult to specify in a computational form,
and are frequently expensive to compute. It is sensible, therefore, either to enshrine
them in the primitive operations of some application, or to w;ite separate programs,
vwhich are envoked, to be rule-checkers, testing the model when the designer believes

he has finished. ' They may operate on either the graphical data or the untranslated
data.

A designer must be able to experiment and, to make the fullest use of graphics, view
his experiments. . He may only partially perform an experiment before he realises it

does not lead to his desired goal. During these experiments, and as he specifies

basic actions on the data, he will often leave the data in states which do not comply
with the design rules. It is not possible for the machine to recognise when a user
believes he has reached a correct state, and hence it is necessary for him to explicitly
request tests.

Many tests to see, for éxample,‘if two parts collide or if they can be machined, are
expensive. These are easily conducted, at least in the first instance by a glance at

10
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a view of the system. The experienced engineer will spot most errors easily by seeing
views of the object. The remaining errors have to be detected by running application
programs as already described, but given the powerful parallel processing or pattern
recognition of the human eye or brain it is foolish not to use it.

These aspects of consistency radically change the techniques used to achieve correct-

ness from those used in a business database application.

Summarz

The following system considerations have been shown to be radically different from
those of a conventional database application:

The scale or volume of Adata.
The concurrency redquirements.

The integrity and recovery requirements.

= W N

The approach to consistency checking.

It is important to exploit these differences in order to achieve the performance
required for interactive graphics.

GRAPHICAL SYSTEMS AND SOFTWARE ENGINEERING

It is a major undertaking to construct a graphical software system, with the assoc-
iated application, communication and interface software, command interpreters, rule
checkers etc. Such undertakings need an appropriate software engineering approach,
dividing the task into appropriate components, and ensuring that these components
conform to the intended design once constructed. One general approach to this last
step is to use the views, data description and constraints on data access provided

by a conventional database management system. The author has written about the
difficulties of using this approach in %his context elsewhere (015). Other approaches
using abstract data types also present difficulties, and a full discussion is not

appropriate here; the interested reader is referred to the following references
(003,004,005).

The productivity and success of a programming team is critically affected by the pro-
gramming language it uses and by the programming environment in which it works.
Various aspects of this environment are worthy of improvement, for example making it
easy to conduct all debugging in the high-level language context, and making it easy
and efficient to bring about changes in that context (019). Another improvement is
to give the programmer a consistent development environment independent of for which
machine he is developing the software. A goc! example of such an approach is the
Bell Laboratory's programmer's workbench (020). The programmer himself can also
benefit from a good interactive graphics facility (021). :

SUMMARY OF REQUIREMENTS

We need to manage data which fulfils the following requirements:

11



