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Preface

T

The macroscopic properties of mafter are governed by quantum mechanical
processes that are collective, in that they involve the co-operation of
enormous numbers of particles. Correspondingly, the.quantum theory of
macroscopic phenomena requires concepts, such as those of order and
entropy, that represent collective effects in ‘very large’ assemblies of
particles. It is therefore radically different from the quantum theory of
atoms and small molecules, where such concepts have no relevance.

Important developments in th¢ quantum theory of macroscopic, or
~ collective, phenomena have ensued from the dlscovery that the idealization
of many-particle systems as infinite can reveal some of their intrinsic
‘properties that would otherwise be masked by finite-size effects. The
essential reason for this may be traced to the fact that this idealization
permits . quahtanve distinctions between the descriptions of matter at the
_macroscopic -and - microscopic, or global and local, levels, whereas the
corresponding distinctions for finite systems are merely quantitative. Thus,
for! example, an infinite system, unlike a finite one, admits inequivalent
representations of its observables, corresponding to macroscopically
different classes of states, such as those belonging to different thermo-
dynamic phases. Consequently, it emerges that the model of an infinite
system provides the conceptual structure needed for a theory of phase
transitions, characterized by spontaneous symmetry changes as well as
thermodynamical singularities. It also provides the framework for theories
of irreversible processes, free from Poincaré cycles, and metastable states,
characterized by stability of a lower grade than that of thermal equilibrium.

The object of this book is to provide a systematic approach to the
quantum theory of collective phenomena, based principally on the model of
infinite systems. The book is addressed to physicists and chemists who are
interested in understanding the scope of this approach, and also to
mathematicians who may wish to study the structure and physical relevance
of the model. Throughout the book, I have aimed to keep the mathematics
as simple as possible, without sacrificing rigour. The book is thus designed
to be readable on the basis of a knowledge of standard quantum theory and
statistical mechanics, and of the essentials of mathematical analysis and
vector space theory. Any additional mathematics required here, mainly
elementary functional analysis, will be expounded in self-contained form,
either in the main text or in the Appendices: for example, an Appendix to
Chapter 2 is devoted to an exposition of the elements of Hilbert space
theory.

The book consists of three parts. Part 1 is an exposition of the generalized
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form ot quantum theory of both finite and infinite systems. Part I} consists
of a general formulation of statistical thermodynamics within the framework
of Part I. This contains what I believe to be a new derivation of
thermodynamics with phase structure (in Chapter 4), which has been
obtained by incorporating conserved global observables into the model of
infinite systems. Part III provides a treatment of the phenomena of phase
transitions, metastability and the generation of ordered structures far from
equilibrium, within the framework of Parts I and II. This serves to
co-ordinate the theory of these phenomena, placing the results obtained by
various methods in a general scheme. It will be seen that, while some of
these results can be obtained by traditional methods, there are also some
whose very conception requires the idealization of infinite systems.

Since a number of the topics treated in this book are enormous subjects in
thgmselves, I have had to be highly selective in my choice of material. The
chice made here, while iuevi.ably dependent upon my own interests, has
been governed by the aim of providing a coherent and relatively simple
approach to the theory of collective phenomena.

London : G.L.S.
January 1985
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1

Introductory discussion on the quantum
theory of macroscopic systems

Macroscopic systems enjoy properties that are qualitatively different from
those of atoms and molecules, despite the fact that they are composed of
the same basic constituents, namely nucler and electrons. For example, they
exhibit phenomena such as phase transitions, dissipative processes, and
even biological growth, that do not occur in the atomic world. Evidently,
such phenomena must be, in some sense, collective,t 1n that they involve
the cooperation of enormous numbers of particles: for otherwise the
properties of macroscopic systems would essentially reduce to those of
independent atoms and molecules.

The problem of how macroscopic phenomena arise from the properties of
the microscopic constituents of matter 1s basically a quantum mechanical
one. That quantum, rather than classical, mechanics is essential here 1s
evident from the great wealth of phenomena in which quantum effects
operate on the macroscopic scale. For example, the Third Law of
Thermodynamics is a quantum law, the stability of matter} itself is a
quantum phenomenon; while the physical processes of Josephson
tunnelling§ and laser radiation,§ as well as certain biological ones,|| are
characterized in terms of ‘macroscopic wave-functions’ of a purely quantum
nature.

The quantum theory of macroscopic systems is designed to provide a
model relating the bulk properties of matter to the microscopic ones of 1its
constituent particles. Since such a model must possess the structure needed
to accommodate a description of collective phenomena, characteristic of
macroscopic systems only, it is evident that it must contain concepts that are
qualitatively different from those of atomic physics.

In order to see the nature of the problems involved here, we start by
noting that a macroscopic system is composed of an enormous number, e.g.
10%, of interacting particles of one, or possibly several, species. At a
microscopic level, therefore, its properties are governed by the Schrodinger
equation for this assembly of particles. However, n view of the huge

1 The idea of collective behaviour of many-particle systems was first explicitly introduced by
Bohm and Pines (1951).

t See Dyson and Lenard (1967, 1968); Lieb and Thirring (1975); Lieb (1976).

§ See Josephson (1964).

9 See Graham and Haken (1970).

Il See H. Fréhlich (1969).
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number of particles in the system, this equation is fantastically complicated:
indeed its extreme complexity represents an essential part of the physical
situatien, being closely connected with the ‘molecular chaos’ that is basic to
statistical mechanics. It is this complexity that makes the many-body
problem of extracting physically relevant information from the Schrédinger
equation radically different from anything encountered in atomic physics.
For, as cogently argued by H. Frohlich (1967, 1973), it imposes a situation
where detailed solution of the Schrédinger equation would be too complex
to even be contemplated} and where, consequently, the essential role of this
equation in the many-body problem is that of a key to interrelationships
between appropriate macroscopic variables, as in thermodynamics or
hydrodynamics. This signifies that the many-body problem should be cast,
ab initio, in both macroscopic and microscopic terms. One can also see this
from the empirical fact that the phenomenological properties of a macro-
scopic many-particle system are determined not only by its microscopic
constitution, but also by its thermodynamic phase or, more generally, by the
macroscopic constraints imposed on it: for example, a system n the solid
phase lacks the hydrodynamical properties of a liquid.

What is needed, then, is a quantum mechanical model that admits precise
mathematical description in both macroscopic and microscopic terms. As a
prerequisite for this, we require clear-cut characterizations of macroscopic
systems and variables, and this poses a problem, since 1t 1s not a prion
evident how large an assembly of particles must be before it can be
considered to be macroscopic. However, an essential clue to the charac-
terization of macroscopicality is that, at an empirical level, the hallmark of
macroscopic objects is that their intensive properties, e.g. their equations of
state, are independent of their sizes. This indicates that the intensive
properties of an assembly of particles of a given species tend to defimte
limits when the number of particles tends to infimty at constant density; and
that a real macroscopic system of these particles is one that is sufficiently
large for its intensive properties to be experimentally indistinguishable from
these limiting ones. Furthermore, at the statistical mechanical level, 1t has
been provedi that intensive properties of many-particle systems do indeed
converge to definite limits, as their sizes tend to infinity, under very general
conditions on their interactions.§

These considerations lead naturally to a model, in which a macroscopic
system is idealized as an infinite assembly of particles, whose density is

1 This is not merely a technical point since, even if one could solve the Schrédinger equation
with the aid of a supercomputer, its solution would surely be so complicated as to be
mfintelligible; and the problem of extracting physically relevant information from it would
presumably be no simpler than the original one.

1 See Ruelle’s book (1969a).

§ These conditions exclude gravitational systems, whose large-scale limiting properties are of
a different nature (cf. Hertel and Thirring 1971).
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finite. It emerges that this model, which has been extensively studied in the
last two decades, possesses just the structures meeded for a theory of
collective phenomena, exposing in sharp relief certain intrinsic properties of
matter that would otherwise be masked by finite-size effects. The model is
defined (cf. Chapter 2) so that its observables and states reduce, in each
bounded region, to those of a corresponding finite system of particles there;

- while its dynamics and intensive thermodynamic potentials are defined as
infinite volume limits of those of a finite system of particles of the given
species. Thus, the model is constructed as an infinite volume limit of that of
a large, but finite, system of the given species of particles.

Let us now briefly indicate how this model provides the natural setting for
a systematic theory of collective phenomena. Turning first to the thermo-
dynamic properties of matter, the passage to the infinite volume limit serves
to simplify the forms of the thermodynamic potentials by eliminating
contributions, due to surface and other finite-size effects, whose extreme
smallness, in real macroscopic systems, is concealed by the complexity of
their mathematical forms. In particular, 1t leads to a very important gain for
the theory of phase transitions. For, whereas the thermodynamic potentials
of a finite system are perfectly smooth,} therr infinite volume limits can
possess singularities, and are known to do so for various models § Thus, it is
only by passing to the infinite volume limit that one can characterize phase
transitions by singularities in the thermodynamic potentials. Here, we
emphasize that the passage to this limit does not introduce anything
spurious into the theory, but simply sharpens huge gradients into the forms
of singularities, which they simulatg so closely as to be experimentally
" indistinguishable from them. From a theoretical standpoint, this constitutes
a great conceptual and methodological gain, since singularities may be
revealed by certain qualitative features of a model, whereas the detection of
huge gradients requires detailed computations that may be too complicated
to be either feasible or enlightening.

The model of an infinite system also introduces physically relevant new
structures into the theory of both equilibrium and non-equilibrium pro-
perties of matter, that go far beyond thermodynamics. A key to these
structures is the fact that the model admits a clear-cut distinction between
local and global variables, the former referring to the bounded spatial
regions of the cystem and the latter to the whole of it. It therefore permits
the natural step of designating as macroscopic variables the global intensive
quantities given by space-averages of local observables — examples of these
are the densities of mass and of energy of the system. Furthermore, these

t See, for example, the books by Ruelle (1969a), Emch (1972), Dubin (1974), Bratteli and
Robinson (1979, 1981), and Thirring (1980).

t See Lebowitz (1968).

§ A useful general reference to models with phase transitions is provided by various articles
in the book by Domb and Green (1972).
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variables may be used to classify the states of the model with respect to their
macroscopic properties in a way that would not be possible for finite
systems. For the observables of an infinite system generally have an infimity
of inequivalent representations,f each corresponding to a class of macro-
scopically equivalent but microscopically different states, whereas the
observables of a finite system have but one} irreducible representation.
Hence, a state of an infinite system may be defined macroscopically by a
representation and microscopically by a vector or denmsity matrix mn the
representation space.

Thus, the model possesses sufficient structure to admit description in the
macroscopic and microscopic terms needed for a theory of collective
phenomena. In the following chapters, we shall show how it may be
employed to obtain a general derivation of thermodynamics with phase
structure (Chapter 4) and to provide the framework for theories of phase
transitions, irreversibility, and metastability. In particular, we shall see that
it admuts theories of phase transitions, characterized not only by thermo-
dynamucal singularities, but also by symmetry breakdown corresponding to
a certain ‘macroscopic degeneracy’ (Chapters 2-5); of critical phenomena
(Chapter 5); of metastable states, characterized by a limited stability of a
local, rather than global, kind (Chapters 3, 6); of irreversible processes, free
from Poincaré cycles (Chapter 7); and of the generation of ordered
structures, far from equilibrium, by such processes (Chapter 7).

T A simple demonstration of this is given in Chapter 2 (§2.3). For a general treatment, see
Emch’s book (1972) and references given thére.
% See Von Neumann (1931).



