A BVTE BODN >%$1b-95

MARK DAHMKE

The BYTE

The BYTE Guide to CP/M-86

by
Mark Dahmke

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogot4 Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi Panama
Paris Sdo Paulo Singapore Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data

Dahmke, Mark.
The byte guide to CP/M-86.

Includes index.

1. CP/M-86 (Computer operating system) 1. Title.
QA76.6.D3325 1984 001.64°25 83-19613
ISBN 0-07-015072-9

Copyright © 1984 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

1234567890 DOCDOC 89876543

ISBNO-07-015072-9

Printed and bound by R.R. Donnelley and Sons, Inc.

XI

Preface

CP/M has become the de facto standard operating system for the 8080,
8085, Z80, and 8086/8088 microprocessors. “De facto” does not neces-
sarily imply best. CP/M on the 8080 or Z80 has its particular problems.
CP/M-86 (the subject of this book) carries forward some of those prob-
lems. For the most part, CP/M has been a positive influence in the
world of microcomputers because it has helped to standardize software.
It is now possible to buy any of hundreds of “CP/M compatible pro-
grams,” load them, and realistically expect them to work.

One of the major drawbacks to CP/M-80 (the 8080, Z80 version)
was the lack of good documentation. The manuals supplied by Digital
Research were hopelessly inadequate, so many user’s guides like this
one were published to fill the information gap. CP/M-86 comes with
manuals that are harder to compete with. They are well organized and
cover all operational aspects of the operating system, with one
exception—they neglect to explain why you need an operating system.
Their manuals assume that you understand this. The BYTE Guide to
CP/M-86 explains each part of the operating system and and each pro-
gram or utility that comes with it in terms of its use and why it needs to
be discussed at all.

Such an approach makes this book more than just a reference
manual. It is compatible with my previous book Microcomputer Oper-
ating Systems, although this book stands on its own.

XI1

An appendix is included that lists references and sources for fur-
ther reading. I have also listed books that may not relate directly to
CP/M-86, but that might be interesting to the reader who wants to
learn more about operating systems.

Appendices III and IV contain complete listings and descriptions
for several public domain programs written in the 8086 instruction set
for use on any CP/M-86 system. The first is a sample program that per-
forms some of the functions of the DIR built-in command in CP/M.
The purpose of the example is to demonstrate the use of many of the
BDOS function calls.

Appendix IV includes a full description, flow charts, and listings
for Char-io, a set of subroutines that simulate disk-oriented character
input and output. Since it is often necessary to filter a text file for spe-
cial characters, it is desirable to read the file a character at a time,
rather than a record at a time. The rd-char and wr-char routines allow a
file to be transferred as a stream of characters, with all disk access be-
ing handled transparently. The listing for a library file including these
routines is given, with two examples for its use. With the examples,
readers should be able to use char-io for any purpose, without much
trouble.

X1

Acknowledgments

I would like to thank Digital Research in general, and Susan Raab in
particular, for their support. Bruce Roberts, Ed Kelly, Chris Morgan,
and Steve Ciarcia were the instigators behind the project, and I would
like to express my appreciation for their efforts.

VII

Table of Contents

Chapter 1 Introduction: What is CP/M-86?

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
.10
11
12
13
.14
15
.16
17
.18

— et it ek e ek et et ek

—
—
=

Introduction

Features and Facilities

The Environment

Disks and Disk Files
Compatibility with CP/M-80
Operations

The Care and Handling of Floppy Disks
Getting Started

Entering Commands

Command Line Editing and Syntax
Other Editing Functions

Disk Files

File Specifications

File Types

Using Wild Cards to Access Files
Changing the Default Drive
Changing Disks

Protecting Disk Files

Other Devices

Chapter 2 Build-in Commands

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Introduction

DIR (Directory)

DIRS (Directory of System Files)
ERA (Erase Files)

TYPE (Type File)

REN (Rename)

USER (Change the User Number)

O OG0 OG0 AN W e

e~ el v v~ e el
o VWM A WEm S S

23
23
23
24
24

26
27

VIII

Chapter 3 Transient Commands and Utilities

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

Introduction

COPYDISK

HELP

PIP (Peripheral Interchange Program)
ED (The CP/M Line Editor)

The STAT (Status Display) Command
The SUBMIT (Batch Processing) Utility
The TOD (Time of Day) Command

Chapter 4 Programmer’s Tools

4.1
4.2
4.3

ASM-86 (The CP/M-86 Assembler)
GENCMD (Generate CMD File) Utility
DDT-86 (The CP/M-86 Debugger Utility)

Chapter 5 The BDOS and How to Use It

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

The Role of the BDOS in the System
8086 Architecture

BDOS Function Calls

Non-disk BDOS Calls

Disk-Related BDOS Functions
Disk-Related BDOS Errors

BDOS Functions 13 through 40

Calling the BIOS Directly From the BDOS
The DMA Base Segment Address
Memory Management

Memory Models

The Base Page

Program Loading and Memory Allocation
BDOS Memory Management Functions

Chapter 6 The BIOS (Basic Input/Output System)

6.1
6.2
6.3
6.4
6.5
6.6

Chapter 7 How to Customize the BIOS (Excluding Disk I/O)

7.1
7.2
7.3

The Purpose of the BIOS
The Organization of the BIOS
The System Initialization Section

Simple Character-Oriented Input/Output Devices

Disk Input/Output and Disk Definitions
Memory Management Functions

Introduction
Adding the IOBYTE Feature
Adding Another Physical Device

29
29
30
32
33
42
58
63
64

67
67
77
79

99

99
102
104
106
111
113
114
131
132
133
133
135
136
136

141
141
142
143
143
145
148

149
149
150
151

7.4 Programming I/O Devices with Interrupts
7.5 Interrupts — How They Work
7.6 How to Install a Modified BIOS

Appendix 1
Appendix 11
Appendix II
Appendix IV
Appendix V
Appendix VI
Index

CP/M-86 Quick Reference Guide
Glossary

MY-DIR Listing

Character 1/0 Disk Functions
CP/M-86 Error Messages
References and Further Reading

IX

152
153
155

1711
189
199
205
235
249
251

CP/M-86 /1

Introduction: What Is CP/M-867?

1.1 INTRODUCTION

CP/M stands for “Control Program for Microcomputers.” It was first
developed for an Intel 8080 microcomputer system by Gary Kildall,
founder of Digital Research. The acronym CP/M means little to the
uninitiated user. All digital computers require programs or sequences of
instructions to operate on. These programs or instructions are referred
to as software. The actual computer is referred to as the hardware. The
hardware may consist of the central processor, memory, disk drives,
and so on. The central processor is responsible for executing the in-
structions that you give it. The problem is that the instructions it wants
to read are not very human readable. That is where computer languages
such as BASIC or Pascal come in.

A language such as BASIC reads English-like commands and con-
verts them into commands that the computer can understand. This is
referred to as compiling or interpreting a program. Even a language like
BASIC needs help when it wants to read data from a disk or write char-
acters to a video display terminal. CP/M, the operating system, is a
control program that can be called upon to carry out menial chores in a
generalized fashion. For example, suppose you have a BASIC inter-
preter and a word processor program written in some other language. If
every program or every language went its own way, reading files from
disk and communicating with printers or terminals as it pleased, there
would be no standardization in the computer.

2/ CP/M-86

THE USER

CENTRAL
PRQCESSOR

THE USER

THE USER

Figure 1.1: The relationship between the microprocessor, operating system, applications,
and users.

The control program or operating system acts like a traffic cop
who makes sure everyone obeys the conventions of the system, or, if
you like, the “rules of the road.”

Note: CP/M-86 is one of the control programs developed for the
8086 and 8088 microprocessors. It is derived from the 8080 version of
CP/M (now referred to as CP/M-80, or CP/M 2.0). CP/M for the
8086 or 8088 is always referred to as CP/M-86. In this book, we will as-
sume that all references to “CP/M” refer to CP/M-86, CP/M for the
8080, 8085 and Z80 microprocessors will be referred to as CP/M-80.

1.2 FEATURES AND FACILITIES

The purpose of an operating system is to provide a common envi-
ronment for programs to run in. This can mean many things. All mi-
crocomputer systems have the following characteristics: input and
output devices, main memory, a central processor, and mass storage.
(See Figure 1.2.) The problem is that many manufacturers have theis
own ideas about how these building blocks should go together and have
built products that can run CP/M, but are all different in some re-
spects. For example, the disk interface may use different circuitry or
may store information on the disk in a different fashion. Alternately,
the video display terminal might be connected to the central processor
differently.

To take all these minor variations into account, CP/M was de-

CP/M-86/3

Y srotesson
b UNIT

8

MAIN
MEMORY

Figure 1.2: Microcomputer system organization.

signed with a customized section that must be set up by the manufac-
turer of the computer. This section is called the basic input/output
system (BIOS) and is the lowest level of the CP/M operating system.
CP/M calls upon this section to accomplish its needs.

Because the BIOS is the only portion of CP/M that changes from
one manufacturer’s computer to the next, the user need not be aware of
any differences in the actual operation of CP/M. To get around the
problem of incompatible software, CP/M supports logical devices that
are indifferent to the actual hardware. Such devices include a console or
video display terminal, a printer, disk drives, and perhaps a modem or
telephone line interface. All software, whether it be BASIC, a word
processor, or a program written by the user, must use the logical devices
provided by CP/M. If this is done, any program should be able to run
on any CP/M system, regardless of who wrote it or what system it was
developed on. This portability of software implies that anyone running
CP/M can trade software with anyone else running CP/M.

Note that CP/M-80 programs should run on any CP/M-80 micro-
computer, and CP/M-86 programs should run on any CP/M-86 micro-
computer. However, as stated earlier, due to differences in instruction
sets, a CP/M-80 program will not run directly on a CP/M-86 system,
and vice versa.

Another feature of CP/M is that it provides built-in functions that
would be tedious to recreate if the programmer were forced to supply
them. Functions such as open disk file, search disk directory, and com-
pute file size are easy for CP/M to do, but would take a programmer a
long time to figure out.

1.3 THE ENVIRONMENT

CP/M-86 requires a certain environment to operate in. The most
important element of the environment is the microprocessor. As the
name implies, CP/M-86 was designed to operate on an Intel 8086 16-bit
microprocessor. The 8088 will also work since it uses the same instruc-
tion set as the 8086 and operates identically.

4 / CP/M-86

The type of microprocessor is important because many different
microprocessors have different instruction sets. This means that the in-
struction code for “call subroutine” on one microprocessor may mean
“store data into memory” on another. Different microprocessors are
developed by different manufacturers for different purposes, and the
instruction sets are often tailored to meet those needs. The 8086 and
8088 are newer, more powerful components, and their instruction sets
have been enhanced from previous generation microprocessors. Specifi-
cally, the 8086 is an outgrowth of the incredibly successful Intel 8080.
The 8080 was introduced in the early 1970’s and has been the most pop-
ular of the microprocessors. It addresses memory in 8-bit wide chunks
called bytes.

A bit is a binary digit and can be either a one or a zero. A byte is a
group of eight bits. Since each bit can be either a one or a zero, the
range of numbers possible with an 8-bit microprocessor is: 00000000 to
11111111 or, in decimal, 0 to 255. For many applications, an 8-bit com-
puter is more than adequate. However, the 8080 (and most 8-bit ma-
chines for that matter) can only address memory with a 16-bit address,
allowing for 64K bytes (65535 in decimal). The K after the 64 is short
for kilo. One kilobyte is not 1,000 bytes but 1,024 bytes. Since com-
puters use a base 2 or binary number system, 2!° or 1024 is more con-
venient than 1,000, so 64K is 64 x 1,024 or 65,535 instead of 64,000.

m} BINARY DIGITS (BITS)

0000000 O |e—AN 8-BIT NUMBER (0 IN DECIMAL)
‘—TRE LARGEST 8-B8IT NUMBER (255 IN DECIMAL]
R —

1 BYTE » 8-BITS

1%2%: 1
18YTE ox2's o
—— 1x2%: &
4
ox 2% 16
27 28282423721 ,0 1x2%: 22
ox2%. o
1x 27 128
181 (THE DECIMAL EQUIVALENT
1 WORD OF 10110101 IN BINARY)

1 BYTE 1 BYTE

[10110101]10011010] - 16- 817 NuMBER

Pid 27 2°

2184 2134 2184 2104 2804 27 4 2%+ 234+ 21 . 46490 IN DECIMAL

Figure 1.3: 8-bit and 16-bit binary numbers.

CP/M-86/ 5

The 8086 is called a 16-bit microprocessor because it addresses
memory and operates on data in 16-bit chunks called words. A word is
two bytes long. When the 8086 reads data from a memory location, it
gets two bytes at a time instead of one. This means that the 8086 runs
faster and is more efficient in handling data.

In order to run CP/M-86, the microcomputer system must have at
least 56K bytes of main memory. The memory, or the address space, of
the 8086 is a continuous sequence of words, in which each word is 16
bits long. Although the 8086 can operate on 16-bit words, it is still con-
venient to speak of the amount of memory in bytes. If a particular sys-
tem has 64K words of memory, it would be correct to say that it has
128K bytes of memory. The 8088 microprocessor is functionally identi-
cal to the 8086, but addresses memory in bytes instead of words. Thus,
for those who wish to upgrade their 8080 or other 8-bit computer to an
8086, it is sometimes possible to replace the old circuit card with one
that has an 8088 processor. Note that the 8088 addresses memory in
bytes, but it operates on 16-bit words just like the 8086. Instead of
loading a word of memory in one operation, the 8088 requires two
loads of one byte each to accomplish the same thing.

The 8086 microprocessor allows the user to address up to one me-
gabyte of memory because it generates a 20-bit memory address. Note
that 2% js 1,048,576. If this number is divided by 1024 to convert to ki-
lobytes, we find that a megabyte is equal to 1024 Kilobytes. Since all
the 8086 internal registers are 16 bits long, the 20-bit memory address
must be generated indirectly. The 8086 uses a memory addressing tech-
nique called segment addressing, as shown in Figure 1.4. When a pro-
gram is loaded, it is placed into memory at an address designated by
CP/M-86 at load time. The program is treated as if it were located at
address zero in memory, but is actually at a higher address. In the ex-
ample in Figure 1.4, the program is loaded at 34FDOH (the H stands
for hexadecimal notation or base 16) in absolute memory. The code seg-
ment register is loaded with the top 16 bits of the start address. The
program counter currently holds 0045H, the address of the next instruc-
tion to be executed. The 8086 shifts the code segment address to the left
4 bits, making it into a 20-bit number. Notice that only the top 16 bits
were stored in the first place. This means that programs can only start
on 16-byte boundaries. The shifted code segment is added to the pro-
gram counter, and the result is used to access the instruction in the
program.

With the segment scheme, it would appear that programs cannot
be larger than 64K bytes (!) and that no more than 64K bytes of data
may be addressed. Actually, the programmer has complete control of
the segment registers and can set up as many data or code areas as de-
sired. Several machine instructions are provided to make this easy.

6 / CP/M-86

PROGRAM COUNTER UP TO ONE MEGABYTE
USER OF ADDRESS SPACE

(INSTRUCTION POINTER) PROGRAM

POINTS TO 00454 0045H —=

(RELATIVE TO START OF THE
PROGRAM }

ABSOLUTE ADDRESS
OF PROGRAM: 34FDOH

00000H 7

CODE SEGMENT REGISTER (16 BITS LONG)

[0 0 4 5 | PROGRAM COUNTER (INSTRUCTION POINTER! (16 BITS LONG)

34FDO ~ BASE OF PROGRAM IN MEMORY
+00045 — PROGRAM COUNTER

35015 — ABSOLUTE ADDRESS OF THE NEXT INSTRUCTION.

34FD:0045 (ANOTHER WAY OF WRITING 35015H)

Figure 1.4: Addressing memory with the 8086.

Since the program and data areas can be separately addressed in
the 8086, the user has several options for organizing a program in mem-
ory. Three memory models are provided in CP/M-86: the Small model,
the Compact model, and the 8080 model. Normally, the user does not
need to be aware of these memory organizations, but they are men-
tioned here to show that memory must be managed and that CP/M-86
performs that function. Chapter 5 discusses memory management in
detail.

1.4 DISKS AND DISK FILES

Almost all modern microcomputer systems have floppy disk drives
or a hard disk drive. Floppy disks have become the industry standard
for software storage and distribution.

Floppy disks are circular, flexible sheets of mylar with a magnetic
coating. They come in two sizes: 8 inches and 5.25 inches in diameter.
A typical 8-inch disk can hold 243,000 bytes of information in single-
density mode, 486,000 bytes in double-density mode, and 1,200,000
bytes in double-density, double-sided operation.

Information is recorded on a floppy disk in tracks and sectors (see

CP/M-86 /7

Figure 1.5). A track, or concentric circle, is divided into sectors. Some
disks are hard sectored (not to be confused with hard disk). Hard-
sectored disks have ten or more holes cut around the inner part, each
hole indicating the start of a sector. Most disks in use now are soft
sectored—meaning that the sector layout is determined by software, not
hardware (holes in the disk).

TRACK 0

TRACK 34 (MINI)
E I TRACK 76 (FULL SIZE)

Figure 1.5: Floppy disk geography.

Standard 8-inch single density disks have 77 tracks, each divided
into 26 sectors. The CP/M standard (following the IBM 3740 disk for-
mat standard) stores 128 bytes per sector. Therefore, each track can
hold 26 x 128 bytes or 3328 bytes. Since there are 77 tracks, a total of
256,256 bytes or characters can be stored on a disk. CP/M normally re-
serves two tracks for the operating system, or loader program, and the
directory. A normal single-density disk directory has room for 64 en-
tries. Each directory entry contains the file name, file type, and loca-
tion information of each file on a disk. The directory for a given disk is
unique and restricted to that disk. Only files on a particular disk may
have directory entries on that disk.

8 / CP/M-86

1.5 COMPATIBILITY WITH CP/M-80

CP/M-80, developed for the 8080 microprocessor will also run on
the 8085 and the Z80 microprocessor. As mentioned earlier, the instruc-
tion set of the 8080 is not compatible with that of the 8086 or 8088.
However, the 8086 was designed to be upward compatible with the
8080. This means that it is possible to translate an 8080 program (at the
instruction mnemonic level) into the 8086 instruction set. A program
exists that can do this for standard Intel mnemonic assembler
programs.

For programs that have been translated from CP/M-80, CP/M-86
offers an 8080 memory model in which all segment registers are set to
the same starting address, giving the effect of all program and data
areas overlapping. This environment most accurately duplicates the ar-
chitecture of the 8080. For more information on the 8080 model, con-
sult Chapter 5, Section 5.11.

If you are transferring a BASIC or Pascal (or other language) pro-
gram, you would normally recompile it on the CP/M-86 system. This is
not always the case, but under most circumstances, it is possible.

All disk files and disk formats from CP/M-80 are compatible with
CP/M-86, although program files have a file type of .COM in CP/M-
80 and .CMD in CP/M-86. Also, command (.CMD) files have a header
record in CP/M-86 that contains allocation information for the four
segments (among other things). Since command files from CP/M-80
are not executable on CP/M-86, this change is not a problem. Source
text files and data files are all directly transferrable to CP/M-86.

The CP/M-86 operating environment was designed to be as com-
patible with CP/M-80 as possible. If you are an experienced CP/M-80
programmer, most functions of the operating system will already be fa-
miliar to you.

1.6 OPERATIONS

When you start up your microcomputer system for the first time, it
is necessary to take some safety precautions. The most important one is
to make a back-up copy of all the diskettes supplied with the system.
Disks don’t last forever, and you may need to go back to the original
disks if one of your daily working copies is damaged or loses data.

The COPYDISK program supplied on the master disk will make the
back-up copy for you, but first, you will probably need to format the
blank disk you intend to use. Most manufacturers supply a program
called FORMAT or FMT or INIT with their computer. It will clear off a

