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Preface

Coding theory is still a young subject. One can safely say that it was born in
1948. It is not surprising that it has pot yet become a fixed topic in the
curriculum of most universities. On the other hand, it is obvious that discrete
mathematics is rapidly growing in importance. The growing need for mathe-
maticians and computer scientists in industry will lead to an increase in
courses offered in the area of discrete mathematics. One of the most suitable
and fascinating is, indeed, coding theory. So, it is not surprising that one
more book on this subject now appears. However, a little more justification
and a little more history of the book are necessary. A few years ago it was
remarked at a meeting on coding theory that there was no book available
which could be used for an introductory course on coding theory (mainly
for mathematicians but also for students in engineering or computer science).
The best known textbooks were either too old, too big, too technical, too
much for specialists, etc. The final remark was that my Springer Lecture
Notes (# 201) were slightly obsolete and out of print. Without realizing what
I was getting into I announced that the statement was not true and proved
this by showing several participants the book Inleiding in de Coderingstheorie,
a little book based on the syllabus of a course given at the Mathematical
Centre in Amsterdam in 1975 (M.C. Syllabus 31). The course, which was a
great success, was given by M. R. Best, A. E. Brouwer, P. van Emde Boas,
T. M. V. Janssen, H. W. Lenstra Jr., A. Schrijver, H. C. A. van Tilborg and
myself. Since then the book has been used for a number of years at the
Technological Universities of Delft and Eindhoven.

The comments above explain why it seemed reasonable (to me) to
translate the Dutch book into English. In the name of Springer-Verlag I
thank the Mathematical Centre in Amsterdam for permission to do so. Of
course it turned out to be more than a translation. Much was rewritten or
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Vi Preface

expanded, problems were changed and solutions were added. and a new
chapter and several new proofs were included. Nevertheless the M.C.
Syllabus (and the Springer Lecture Notes 201) are the basis of this book.

The book consists of three parts. Chapter 1 contains the prerequisite
mathematical knowledge. It is written in the style of a memory-refresher.
The reader who discovers topics which he does not know will get some idea
about them but it is recommended that he also looks at standard textbooks
on those topics. Chapters 2 to 6 provide an introductory course in coding
theory. Finally, Chapters 7 to 11 are introductions to special topics and can
be used as supplementary reading or as a preparation for studying the
literature.

Despite the youth of the subject, which is demonstrated by the fact that
the papers mentioned in the references have 1974 as the average publication
year, I have not considered it necessary to give credit to every author of the
theorems, lemmas, etc. Some have simply become standard knowledge.

It seems appropriate to mention a number of textbooks which I use
regularly and which I would like to recommend to the student who would
like to learn more than this introduction can offer. First of all F. J.
MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes
(reference [46]), which contains a much more extensive treatment of most of
what is in this book and has 1500 references! For the more technically
oriented student with an interest in decoding, complexity questions, etc. E. R.
Berlekamp's Algebraic Coding Theory (reference [2]) is a must. For a very
well-written mixture of information theory and coding theory I recommend:
R. J. McEliece, The Theory of Information and Coding (reference [51]). In
the present book very little attention is paid to the relation between coding
theory and combinatorial mathematics. For this the reader should consult
P. ). Cameron and J. H. van Lint, Graphs, Codes and Designs (reference [ 11]).

I sincerely hope that the time spent writing this book (instead of doing
research) will be considered well invested.

Eindhoven J. H. vaN LINT
July 1981
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Chapter 1
Mathematical Background

In order to be able to read this book a fairly thorough mathematical back-
ground is necessary. In different chapters many different areas of mathematics
play a role. The most important one is certainly algebra but the reader must
also know some facts from elementary number theory, probability theory
and a number of concepts from combinatorial theory such as designs and
geometrieg. In the following sections we shall give a brief survey of the
prerequisite knowledge. Usually proofs will be omitted. For these we refer
to standard textbooks. In some of the chapters we need a large number of
facts concerning a not too well-known class of orthogonal polynomials,
called Krawtchouk polynomials. These properties are treated in Section 1.2.
The notations which we use are fairly standard. We mention a few which
may not be generally known. If C is a finite set we denote the number of
elements of C by | C|. If the expression B is the definition of concept A then
we write 4 := B. We use “iff ” for “if and only if ”. An identity matrix is
denoted by I and the matrix with all entries equal to one is J. Similarly we
abbreviate the vector with alil coordinates 0 (resp. 1) by 0 (resp. 1). Instead
of using [x] we write [ x| := max{neZ|n < x} and use the symbol [x] for
rounding upwards.

§1.1 Algebra

We need only very little from elementary number theory. We assume known
that in N every number can be written in exactly one way as a product of
prime numbers (if we ignore the order of the factors). If a divides b then we
write a|b. If p is a prime number and p"|a but p"* ' ya then we write p"lja. If
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2 I Mathematical Background

ke N, k > 1 then a representation of n in the base k is a representation

0 < n, <k for 0 <i<|l The largest integer n such that n a and nib is
called the greatest common divisor of @ and b and denoted by g.c.d.(a, b)
or simply (a, b). If m|(a — b) we write a = b (mod m).

(1.1.1) Theorem. If
o) :=[{meN|l <m < n, (m,n) =1}
then

(l) (P(n) =1 l_lp'n(l - II/P)'
(i) Y g1 0(d) = n.

The function ¢ is called the Euler indicator.
(1.1.2) Theorem. If (a, m) = 1 then a*"™ = | (mod m).
Theorem 1.1.2 is called the Euler-Fermat theorem.

(1.1.3) Definition. The Moebius function p is defined by

1, ifn=1,
u(n) =13 (=1, ifnis the product of k distinct prime factors,
lO, otherwise.

(1.1.4) Theorem. If and g are functions defined on N such that
gn) =} f(d),

dln

then

fo = z;«d)g(S).

d|n

Theorem 1.1.4 is known as the Moebius inversion formula.

Algebraic Structures

We assume that the reader is familiar with the basic ideas and theorems
of linear algebra although we do refresh his memory below. We shall first
give a sequence of definitions of algebraic structures with which the reader
must be familiar in order to appreciate algebraic coding theory.



§1.1 Algebra
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(1.1.5) Definition. A group (G, )is a set G on which a product operation has
been defined satisfying

(l) Vae GvbeG[ab € G]*
(il) VacaYpecVeecllable = albc)],
(1) 3,.6Vacclae = ea = al,
(the element e is unique),
(iV) VacgIveclab = ba = €],
(b is called the inverse of a and also denoted by a™').
If furthermore
(v} VaeGVoeglab = bal,

then the group is called abelian or commutative.

If (G, )isagroup and H < G such that (H, )is also a group then (H, )
is called a subgroup of (G, ). Usually we write G instead of (G. ). The number
of elements of a finite group is called the order of the group. If (G, )isa
group and ae G then the smallest positive integer n such that a" = e (if
such an n exists) is called the order of a. In this case the elements e, a, a?, . ..,
a'~ ! form a so-called cyclic subgroup with a as generator. If (G, ) is abelian
and (H, ) is a subgroup then the sets aH := {ah|he H} are called cosets
of H. Since two cosets are obviously disjoint or identical the cosets form a
partition of G. An element chosen from a coset is called a representative of
the coset. It is not difficult to show that the cosets again form a group if we
define multiplication of cosets by (aH)(bH) := abH. This group is called the
factor group and indicated by G/H. As a consequence note that if a € G then
the order of a divides the order of G (also if G is not abelian).

(1.1.6) Definition. A set R with two operations, usually called addition and
multiplication, denoted by (R, +, ), is called a ring if

(i) (R, +) is an abelian group,
(“) VaevaEvaeR[(ab)C = a(bC)],
(Gil) V. gVscrVecrla(b +¢) = ab + ac A (a + b)c = ac + bcl.

The identity element of (R, +) is usually denoted by 0.
If the additional property

(i) V,.rVscrlab = ba)

holds, then the ring is called commuzative.
The integers Z are the best known example of a ring.

(1.1.7) Definition. If (R, +, )is a ring and 0 # § < R, then S is called an
ideal if

(1) vaeSVbeS[a - bes]a

(i) V,e5Yper[ab€S A baeS].

i
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4 1 Mathematical Background

It is clear that if S is an ideal in R then (§, +, ) is a subring, but require-
ment (ii) says more than that.

(1.1.8) Definition. A field is a ring (R, +, ) for which (R\{0}, ) is an abelian
group. .

(1.1.9) Theorem. Every finite ring R with at least two elements such that
VBevasR[ab =0= ((l =0vb= 0)]
isa field.

(1.1.10) Definition. Let (V, +) be an abelian group, F a field and let a multi-
plication F x V — V be defined satisfying

() Vaer[la =a],
v:eFvﬂeFvueV[a(ﬁa) = (aﬁ)a],

(”) v:e FVIEVVbG V[a(a + b) =oa + ab]’
VueFvﬂsFV-eV[(a + ﬂ)a =oa+ ﬂa]

Then the triple (V, #, F) is called a vector space over the field F. The identity
element of (V, +) is"denoted by 0.

We assume the reader to be familiar with the vector space R" consisting
of all n-tuples (a,, a;, . . ., a,) with the obvious rules for addition and muiti-
plication. We remind him of the fact that a k-dimensional subspace C of this
vector space is a vector space with a basis consisting of vectors a, :=(ay,,
Aizv. i)y 8y = (21,3255 A2n), - - - B = (Gh1s i - - - » Gan), Where the
word basis means that every a € C can be written in a unique way asa,8, +
%,8, + -+ + %.a,. The reader should also be familiar with the process of
going from one basis of C to another by taking combinations of basis
vectors, etc. We shall usually write vectors as row vectors as we did above.
The inner product (a,b) of two vectors a and b is defined by

(a,b):=a,b, + a,b, +--- + a,b,.

The elements of a basis are called linearly independent. In other words
this means that a linear combination of these vectors is 0 iff all the coeffi-
cients are 0. If a,, ..., a, are k linearly independent vectors, i.e. a basis of a
k-dimensional subspace C, then the system of equations <a;, y) =0
(i = 1,2,..., k) has as its solution all the vectors in a subspace of dimension
n — k which we denote by C*. So,

C o= {y e R Voo (<X ¥ = 01}

These ideas play a fundamental role later on, where R is replaced by a finite
field F. The theory reviewed above goes through in that case.
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(1.1.11) Definition. Let (¥, +) be a vector space over F and let a multiplication
V x ¥V — ¥V be defined which satisfies

@) (V, +, )isaring,
(1) Yeeg Vacr Vper[(aa)b = a(ab)].

Then we say that the system is an algebra over F.

" Suppose we have a finite group (G, -) and we consider the elements of G as
basis vectors for a vector space (V, +) over a field F. Then the elements
of V are represented by linear combinations 2,9, + 2,9, + -+ + 2,9,
where

o; el gi€G, (l1<i<n=|[G])

We can define a multiplication * for these vectors in the obvious way,
namely

(Z a.»g.-) . (; ﬁjgj) = Z g(a;ﬁj)(g[ “g;)

which can be written as Y, y,g,, where 3, is the sum of the elements x4,
over all pairs (i, j) such that g;-g; = g,. This yields an algebra which is
called the group algebra of G over F and denoted by FG.

ExaMpLES. Let us consider a number of examples of the concepts defined
above.

If A:=={a,, a,, ...,q,} is a finite set, we can consider all one-to-one
mappings of S onto S. These are called permutations. If o, and ¢, are permuta-
tions we define 0,0, by (6,0,Xa) = 0,(0,(a)) for all ac A. It is easy to see
that the set S, of all permutations of A with this multiplication is a group,
known as the symmetric group of degree n. In this book we shall often be
interested in special permutation groups. These are subgroups of §,. We
give one example. Let C be a k-dimensional subspace of R”. Consider all
permutations ¢ of the integers 1, 2, ..., n such that for every vector ¢ =
(c1,€2,..., ¢,) € C the vector (C,1y, Coiz)s - - - » Corm) 18 also in C. These clearly
form a subgroup of S,. Of course C will often be such that this subgroup of §
consists of the identity only but there are more interesting examples ! Another
example of a permutation group which will turn up later is the affine permuta-
tion group defined as follows. Let F be a (finite) field. The mapping f, .,
where uel, velF, u# 0, is defined on F by f, ,(x):=ux + v for all xeF.
These mappings are permutations of F and clearly they form a group under
composition of functions.

A permutation matrix P is a (0, 1)-matrix which has exactly one 1 in each
row and column. We say th..t P corresponds to the permutation o of
{1,L2,....,n}ifp; = Liffi = 6(j)(i = 1,2, ..., n). With this convention the



6 1 Mathematical Background

product of permutations corresponds to the product of their matrices.
In this way one obtains the so-called matrix representation of a group of
permutations.

A group G of permutations acting on a set Q is called k-transitive on Q
if for every ordered k-tuple (a,,. .., a,) of distinct elements of Q and for every
k-tuple (b,, ..., b,) of distinct elements of Q there is an element o€ G such
that b; = o(a;) for { < i < k. Ifk = 1 we call the group transitive.

Let S be an ideal in the ring (R, +, ). Since (S, +) is a subgroup of the
abelian group (R, +) we can form the factor group. The cosets are now
called residue classes mod S. For these classes we introduce a multiplication
in the obvious way: (@ + S)(b + S):=ab + S. The reader who is not familiar
with this concept should check that this definition makes sense (i.e. it does
not depend on the choice of representatives a resp. b). In this way we have
constructed a ring, called the residue class ring R mod S and denoted by
R/S. The following example will surely be familiar. Let R := Z and let p be
a prime. Let S be pZ, the set of all multiples of p, which is sometimes also
denoted by (p). Then R/S is the ring of integers mod p. The elements of R 'S
can be represented by 0, 1, ..., p — | and then addition and multiplication
are the usual operations in Z followed by a reduction mod p. For example,
if we take p = 7 then 4 + 5 = 2 because in Z we have 4 + 5 = 2 (mod 7).
In the same way 45=6in Z/7Z = Z/(7). If S is an ideal in Z and S # {0}
then there is a smallest positive integer k in S. Let s€5. We can write s as
ak + b, where 0 < b < k. By the definition of ideal we have uk € S and hence
b =s — akeS and then the definition of k implies that b = 0. Therefore
S = (k). An ideal consisting of all multiples of a fixed element is called a
principal ideal and if a ring R has no other ideals than principal ideals it is
called a principal ideal ring. Therefore Z is such a ring.

(1.1.12) Theorem. If p is a prime then Z/pZ is a field.

This is an immediate consequence of Theorem 1.1.9 but also obvious
directly. A finite field with n elements is denoted by F, or GF(n) (Galois
field).

Rings and Finite Fields

More about finite fields will follow below. First some more about rings
and ideals. Let F be a finite field. Consider the set F[x] consisting of all
polynomials a, + a,x + --- + a,x". where n can be any integer in N and
a;€ Ffor 0 < i < n. With the usual definition of addition and multiplication
of polynomials this yields a ring (F[x], +. ), which is usually just denoted
by F[x]. The set of all polynomials which are multiples of a fixed polynomial
g(x), i.e. all polynomials of the form a(x)g(x) where a(x) € F[x], is an ideal
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in F[x]. As before. we denote this ideal by (g(x)). The following theorem
states that there are no other types.

(1.1.13) Theorem. F[x] is a principal ideal ring.

The residue class ring F[x]/(g(x)) can be represented by the polynomials
whose degree is less than the degree of g(x). In the same way as our example
Z/1Z given above, we now multiply and add these representatives in the
usual way and then reduce mod g(x). For example, we take F = F, = {0, 1}
and g(x) = x4+ x4+ L Then (x + DN(x"+ D=x3+x"+x +1 =x%
This example is a useful one to study carefully if one is not familiar with
finite fields. First observe that g(x) is irreducible, i.e., there do not exist
polynomials a(x) and b(x)e F[x]. both of degree less than 3, such that
g(x) = a(x)b(x). Next. realize that this means that in F,[x](g(x)) the
product of two elements a(x) and b(x) is 0 iff a(x) = 0 or b(x) = 0. By
Theorem 1.1.9 this means that F,[x]/(g(x)) is a field. Since the representatives
of this residue class ring aii have degrees less than 3, there are exactly eight
of them. So we have found a field with eight elements, i.e. F,;. This is an
example of the way in which finite fields are constructed.

(1.1.14) Theorem. Let p be u prime and let g(x) be an irreducible polynomial of
degree 1 in the ring F,[x]. Then the residue class ring F [x]/(g(x)) is a field
with p" elements.

Prook. The proof is the same as the one given for the examplep = 2, r = 3,
g(x) = x>+ x + 1. O

(1.1.15) Theorem. Let [ be a field with n elements. Then n is a power of a prime.

PROOF. By definition there is an identity element for multiplication in F.
We denote this by 1. Of course | + 1 € F and we denote this element by 2.
We continue in this way, i.e. 2 + 1 = 3, etc. After a finite number of steps we
encounter a field element which already has a name. Suppose, e.g. that the
sum of k terms 1 is equal to the sum of / terms 1 (k > /). Then the sum of
(k — D terms 1is O, 1.e. the first time we encounter an element which already
has a name, this element is 0. Say 0 is the sum of k terms 1. If k is composite,
k = ab, then the product of the elements which we have called a resp. b is 0,
a contradiction. So k is a prime and we have shown that [, is a subfield of F.
We define linear independence of a set of elements of F with respect to
(coefficients from) F, in the obvious way. Among all linearly independent
subsets of F let {x,, x,, - .., X,} be one with the maximal number of elements.
If x is any element of F then the elements x, x,, x,, ..., X, are not linearly
independent, ie. there are coefficients 0 # «, ay,..., , such that ax +
o;x, + -+ a,x, =0 and hence x is a linear combination of x; to x,.
Since there are obviously p” distinct linear combinations of x; to x, the
proof is complete. g



8 1 Mathematical Background

From the previous theorems we now know that a field with n elements
exists iff n is a prime power, providing we can show that for every r > 1
there is an irreducible polynomial of degree r in F,[x]. We shall prove this
by calculating the number of such polynomials. Fix p and let I, denote the
number of irreducible polynomials of degree r which are monic, i.e. the
coefficient of x" is 1. We claim that

(1.1.16) (1-p2)'= ﬁ (1-2z)y".
r=1

In order to see this, first observe that the coefficient of z* on the left-hand
side is p" which is the number of monic polynomials of degree n with coeffi-
cients in F,. We know that each such polynomial can be factored uniquely
into irreducible factors and we must therefore convince ourselves that
these products are counted on the right-hand side of (1.1.16). To show this
we just consider two irreducible polynomials a,(x) of degree r and a,(x)
of degree s. There is a 1-1 correspondence between products (a,(x))*(a,(x))'
and terms 2%z in the product of (1 + 2 + 22" +--yand (1 + 23 + 25 + -+ ).
If we identify z, and z, with z, then the exponent of z is the degree of
(a,(x)a,(x))". Instead of two polynomials a,(x) and a,(x) we now consider
all irreducible poiynomials and (1.1.16) follows.

In (1.1.16) we take logarithms on both sides, then differentiate, and
finally multiply by z to obtain

7 7

(1.1.17)
1 —pz

=k
Comparing coefficients of =" on both sides of (1.1.17) we find
(1.1.18) pr=rl,.

rln

1-—z

Now apply Theorem 1.1.4 to (1.1.18). We find

(1119) - Z y(d)p'/d > — {p — p — p'/3 _ }

dlr
_ 2 1 -rf2+1 0
v Zp -p )> 0.

Now that we know for which values of n a field with n elements exists we
wish to know more about these fields. The structure of F . will play a very
important role in many chapters of this book. As a preparation consider a
finite field F and a polynomial f(x) € F[x] such that f(a) = 0, where a€F.
Then by dividing we find that there is a g(x) € F[x] such that f(x) =
(x — @)g(x). Continuing in this way we establish the trivial fact that a poly-
nomial f(x) of degree r in F[x] has at most r zeros in F.
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If o is an element of order e in the multiplicative group (F,-\{0}, )thenz
is a zero of the polynomial x¢ — 1. In fact, we have

x—1=(x— D —a)x —a)---(x — 2" 1)

It follows that the only elements of order e in the group are the powers «'
where 1 < i < e and (i, ¢) = 1. There are ¢p(e) such elements. Hence, for
every e which divides p” — 1 there are either O or ¢(e) clements of order e
in the field. By (1.1.1) the possibility 0 never occurs. As a consequence there
are elements of order p” — 1, in fact exactly ¢(p’ — 1) such elements. We
have proved the following theorem.

(1.1.20) Theorem. In [, the multiplicative group (F\{0}, ) is a cyclic group.
This group is often denoted by Fy.

(1.1.21) Definition. A generator of the multiplicative group of F, is called a
primitive element of the field.

Note that Theorem 1.1.20 states that the elements of F, are exactly the
q distinct zeros of the polynomial x? — x. An element f such that g* =1
but B/ # 1 for 0 <! < k is called a primitive kth root of unity. Clearly a
primitive element « of F, is a primitive (¢ — 1)th root of unity. If e divides
g — 1 then «f is a primitive ((g — 1)/e)th root of unity. Furthermore a con-
sequence of Theorem 1.1.20 is that F,. is a subfield of F,. iff r divides s.
Actually this statement could be slightly confusing to the reader. We have
been suggesting by our notation that for a given g the field F, is unique.
This is indeed true. In fact this follows from (1.1.18). We have shown that
for g = p" every element of F_ is a zero of some irreducible factor of x — x
and from the remark above and Theorem 1.1.14 we see that this factor
must have a degree r such that r{n. By (1.1.18) this means we have used all
irreducible polynomials of degree r where r|n. In other words, the product
of these polynomials is x? — x. This establishes the fact that two fields F and
F' of order g are isomorphic, i.e. there is a mapping ¢: F — F’ which is one-
to-one and such that ¢ preserves addition and multiplication.

The following theorem is used very often in this book.

(1.1.22) Theorem. Let g = p’ and 0 # f(x) e F,[x].

() IfaeFuand f(a) = O, then f(a®) = 0.
(i) Conversely, if f(«8) = O for every « for which f(x) =0 then f(x) € F [x].
PROOF.

(i) By the binomial theorem we have (a + b)” = a® + b° because p divides
(f) for 1 <k <p -1 It follows that (a +b) =a* + . If f(x)'=

Y a;x' then (f(x))? = Y. af(x?)"



