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FOREWORD

Functional integration is one of the most powerful methods of contempo-
rary theoretical physics, enabling us to simplify, accelerate, and make
clearer the process of the theoretician’s analytical work. Interest in this
method and the endeavour to master it creatively grows incessantly. This
book presents a study of the application of functional integration methods
to a wide range of contemporary theoretical physics problems.

The concept of a functional integral is introduced as a method of
quantizing finite-dimensional mechanical systems, as an alternative to
ordinary quantum mechanics. The problems of systems quantization with
constraints and the manifolds quantization are presented here for the first
time in a monograph. '

The application of the functional integration methods to systems with
an infinite number of degrees of freedom allows one to uniquely introduce
and formulate the diagram perturbation theory in quantum field theory
and statistical physics. This approach is significantly simpler than the
widely accepted method using an operator approach.

A large part of this book is devoted to the development of nonstandard
methods of perturbation theory using specific examples, the first of which
is the theory of gauge fields. The method of functional integration with
necessary modifications is used for the quantization of the electromagnetic
field, the Yang-Mills field, and the gravitational field. Attempts to
construct a unified gauge invariant theory of electromagnetic and weak
interactions are explored here, too. The next example of functional
integration is the derivation of the infrared asymptotic behaviour of the
Green’s function of quantum electrodynamics. We shall examine the
application of functional integration to problems of scattering of high-
energy particles and the formulae for a doubly-logarithmic asymptotic
and eikonal approximation will be obtained.

The applications of functional integrals to problems of statistical physics
begin with examples of superfluidity, superconductivity, and plasma
theory. A modified perturbation theory for superfluid Bose and Fermi
systems is used in the microscopic approach to the construction of the

vii



il FOREWORD

hydrodynamic Hamiltonian of the system and the equations of superfluid
hydrodynamics. For the first time in a monograph, the question of
superfluidity of two-dimensional and one-dimensional Bose systems is
elucidated. The method describing quantum vortices in Bose and Fermi
systems is developed and applied, specifically, to the theory of superconduc-
tivity of the second type. The method for using the hydrodynamical
Hamiltonian for systems with Coulomb interaction is illustrated in
application to the theory of plasma oscillations. The example of a problem
which allows such a solution in functional integration formalism is the
Ising model. In the last chapters dealing with statistical physics, the Wilson
method is studied which utilizes functional integration for the theory of

“yphase transitions. The closing chapter of the book extends the notion of
excitations of the quantum vortex type which is customary in statistical
physics onto the quantum field theory. This trend, bent on diminishing
the number of fundamental fields, is a fairly recent development.

The book need not be read successively. After one becomes acquainted
with the definition of the functional integral and the methods of construc-
tion of diagram perturbation theory (see (Chapters 1,2), it is possible to
concentrate on those applications of functional integrals to physical
systems, which are most interesting. The choice of specific examples is, to
a great extent, determined by the scientific interests of the author.

I would like to thank V. Alonso for the help provided during the
preparation of the manuscript for press.
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CHAPTER |

FUNCTIONAL INTEGRALS AND
QUANTUM MECHANICS

1. INTRODUCTION

Functional integrals were introduced into mathematics during the twenties
by Wiener as a method for solving the problems of diffusion and Brown’s
motion [1]. In physics, functional integrals were rediscovered in the forties
by Feynman and used by him for the reformulation of quantum mechanics.
In the late forties, Feynman constructed a new formulation of quantum
electrodynamics, based on the method of functional integration, and
developed the now-famous diagram technique of perturbation theory
[2-4]. This new theory has substantially simplified calculations and has
helped to construct the theory of renormalization. The latter has turned
out to be an important leap in solving the problem of divergencies which
have arisen in quantum electrodynamics since its formulation in the 1929
paper of Heisenberg and Pauli [5]. At the present time, the theory of
electromagnetic interactions agrees with experiments up to the seventh
decimal digit, and this is one of the merits of the new perturbationitheory.

Since the fifties, functional integrals, arising when solving functional
equations in quantum field theory (Schwinger equation [6]), have been
intensively studied. The functional formulation of quantum field theory has
been investigated in the works of Bogoliubov [ 7], GeI'fand and Minlos [8],
Matthews and Salam [9], Khalatnikov [10] and Fradkin [11].

In the sixties, a new field of applications of functional integrals
appeared - the quantization of gauge fields. The electromagnetic field, the
Einstein gravitational field, the Yang—Mills field and the chiral field can
serve as examples of gauge fields. The action functionals of those fields
are invariant under gauge transformations which depend on one or several
arbitrary functions. From a mathematical point of view, gauge fields are
fields of geometrical origin which are connected with fibrations over
four-dimensional space-time. The specificity of geometrical fields has to
be taken into account when quantizing them; otherwise incorrect results
may be obtained.

8550171



2 CHAPTER 1

This was noticed for the first time by Feynman in the Yang- Mills and
gravitational fields. He has shown that quantization according to a method
analogous to the Fermi method in quantum electrodynamics, violates the
unitarity condition. Feynman also proposed a method for the removal of
the difficulties shown.

Later, as a result of the work of several authors, the probiem of
gauge-field quantization was studied and the functional integration
method [13-18] has turned out to be the most convenient method for
solving that problem.

A special place among gauge fields is occupied by the gravitational
field. The question of its quantization is connected with the hope that it
is a natural physical regularizator cutting the interaction on small
distances. The first results supporting this point of view were obtained by
De Witt [19] and Khriplovich [20].

At the present time, the method of functional integration is most
frequently applied to problems which are some how connected with gauge
fields. It is necessary to underline its utilization in attempts to construct
a unified theory of electromagnetic and weak interactions [21-23].

There exist many other applications of functional integration to
quantum field theory. For example, by using this method it becomes
simple to derive various asymptotic formulae for infrared and ultraviolet
asymptotics of the Green functions and scattering amplitudes [60, 67-71].
The utilization of functional integrals also turns out to be interesting in
dual models.

In the late sixties and early seventies, the theory of automodel (scaling)
behaviour of quantum field theory amplitudes at high energies, which has
much in common with the theory of phase transitions of the second kind,
was developed. Here, the method of functional integration helps to
qualitatively describe the picture of high-energy particle scattering and of
critical phenomena, and to approximately evaluate the power indices
(critical indices).

Lately, a new field of applications of functional integrals has appeared
which is connected with the search for excitations in quantum field theory
and is analogous to the quantum vortices in statistical physics. The idea
that some of the elementary particles can be looked upon as collective
excitations of the interacting fundamental fields system allows one to
reduce the number of fundamental fields. The method of functional
integration is perhaps the only acceptable approach to the solution of the
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problems appearing here. Some of the results obtained this way are
expounded in Chapter 11 of this book.

The application of functional integrals in statistical physics allows one
to derive many interesting results which are only obtained with difficulty
by other methods. Feynman applied this approach to polaron theory and
to the liquid helium theory and he succeeded in accurately evaluating the
self-energy of a polaron and in investigating the qualitative features of the
A-transition in liquic helium.

The theory of phase transitions of the second kind, superfluidity,
superconductivity, lasers, plasma, Kondo effect, Ising model — this is an
incomplete list of problems, for which the application of the functional
integration method appears to be very useful. In some of the probiems,
it alows us to prove results obtained by other methods, clarify the
possibilities of their applicability and outline the evaluation of corrections.
If there is a possibility of an exact solution, the method of functional
integration gives a simple way of obtaining it. In problems far from being
exactly solvable (general theory of phase transitions), the application of
functional integrals helps to build up the qualitative picture of the
phenomenon and to develop the approximative methods of calculations.

Functional integrals are especially useful for the description of collective
excitations, such as plasma oscillations in the theory of the system of
particles with Coulomb interaction, quantum vortices and long-wave
photons in the theory of superfluidity and superconductivity. That is the
case when standard perturbation theory should be modified. Functional
integrals represent a sufficiently flexible mathematical apparatus, adjusted
for such a revision and suggesting the method for its concrete realization.

Functional integration is an ‘integral evaluation’ adjusted to the needs
of contemporary physics. At present, however, the exact mathematical
theory and correct definition of functional integrals used in quantum field
theory and statistical physics is lacking.

The exact definition and correct mathematical theory can be con-
structed for functional integrals which give solutions of partial differential
equations, inciuding the equations of quantum mechanics and diffusion
theory. Mathematical questions of the theory of functional integrals are
expounded in the surveys of Gel'fand and Yaglom [26], Kovalchik [27],
in the books of Kac [28] and Berezin [29]. Let us also mention the works
of Berezin [30], Daletzki [31], Evgraphov [32], Alimov and Buslaiev [33],
devoted to the exact definition of some functional integrals.
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In the works performed on the physical level of exactness, the functional
integral is used as a heuristic means for the construction of perturbation
theory and for the transition from one perturbation theory to another.

-From this point of view the functional integrals are studied in this book.

2. FUNCTIONAL INTEGRALS IN QUANTUM MECHANICS

We present here the definition of the functional integral in quantum
mechanics. Feynman in his 1948 article [2] introduced and studied the
functional integral in configuration space. For many applications, however,
the most suitable form seems to be the expression given by Feynman in
1951 {47, where integration is taken along trajectories in the phase space.

Let us investigate the one-dimensional mechanical system determined
by its Hamilton fuonction H(g, p), where ¢ is the coordinate and p is the
canonically conjugated momentum. The principle of canonical quantiza-
tion of such a system consists of replacing the coordinate g and momentum
p by operators 4 and p accBrding to the rule

where £ is the Planck constant. In the following we shall use the system
of units with h=1. The operators act on a Hilbert space of complex
functions W(g). According to (2.1), the effect of the coordinate operator
on the function ¥(q) is a multiplication of that function by the variable g
and the operator of momentum is proportional to the differentiation

/operator d/0q.
The time evolution of a state is determined by the Heisenberg equation
Yy, (22)

at

where H is the energy operator obtained from the classical Hamiltonian
function H(g,p) by replacing q and p, according to (2.1), with operators §
and p ordered in a certain way. We can write down the Tormal solution
of equation (2.2) as

W(1) = U(t.1)(t,), 2.3)
where the evolution operator
U(t, t,) = exp (i(to, — )H) (249

is the exponential of the energy operator H.
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The method of functional integration allows one to express the matrix
element of the evolution operator as a mean value of the expression

. exp (iS[to,t]) (2.5)

over trajectories in the phase space, where

t

Slto 11 = J (p(r)d(z) — H(g(x), p(r))) dr (2.6)
to

is a classical action corresponding to the trajectory (q(z), p(7)),(t, £ 1 <1),

in the phase space, ¢(7) = dq()/dr.

The mean value over trajectories is called the Feynman functional
integral. Usually this is defined as a limit of finite-dimensional integrals.
We shall present here one of the possible definitions.

We divide the interval [t,,t] witht,,...,1,_, points into N equal parts.
Let us consider the functions p(r), defined on the interval [t,,¢], which
are constant on the intervals

[to, 1) (TysTo) . (Tho 1ut], (2.7)

and the continuous functions g(r) linear on the intervals (2.7). We fix
the values of the function g(r) at the end points of the interval [z,, t], putting

Q) =4q0; 4q)=gq. (2.8)

The trajectory (q(z), p(t)) is determined by values of the piecewise linear
function ¢(t) in points 1,,...,7y_, (we denote them by q,,...,qy_,) and
by values of the piecewise constant function p(r) on intervals (t,,1,,,).
We denote those values by p,,...,py.

Let us consider the finite-dimensional integral

(2W)_deP1 dq,...dgy_, dpyexp(iS[ts, t1) = J (4o, q; to, 1),

- (29)
where S[t,,t] is the action (2.6) for the described trajectory (g(z), p(z)),
defined by the parameters q,,...,qy,p;,...,py. The basic assertion says
that the limit of the integral (2.9) for N — co is equal to the matrix element
of the evolution operator

Jim Jyido,q;t0,8) = (qlexp i(to — H)Igo >. (2.10)

It is not hard to check this statement in those cases when the
Hamiltonian H is a function of the coordinate or momentum only.
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If H = H(q) (H depends on tte coordinate only), then the classical action
for the above-mentioned trajectory (q(), p()), takes the form

f (pd— H(@)dt =p,(q, — qo) + P22, —q) +

ot

+p~(q—q~_,)—J H(g(r))dz. (2.11)
to
Integrating in (2.9) over the momenta, we obtain the product of
d-functions:

Hg, — 40)0(a; —a,) Mg —gn— ) (212

This product allows us to put the expression exp(—ifi H(q(r))dr)
to be equal to exp(i(t, — 1)H(q,)) and place it in front of the integration
symbol. Further integration over q,,...,qy_, coordinates eliminates all
S-functions except one and leads to the result

(g0 — @ exp (i(to — H(q,)), (2.13)

identical to the matrix element of the evolution operator.
If H = H(p) (H depends on momentum only) then the action takes the
form '

f (p(t)(z) — H(p(r))dt = py(q, —q0) + P2(g2 — Q) + -

t .
R MU Rl Y j H(p(x))dz. (2.14)
. o
Integrating in (2.9) first over coordinates q,,...,qy_, and then over all
momenta p,,...,py We obtain the expression

;;jdp exp {ip(g — o) +ilto — )H(p)}, (2.15)
equal to the matrix element of the evolution operator for the Hamiltonian
H = H(p). :

The proof of formula (2.10) is more complicated if nontrivial dependence
of the Hamiltonian on the coordinate and momentum occurs. In such a
case, the prelimit expression (2.9) is not identical to its limit— the evolution
operator matrix element. Proof of a formula analogous to (2.10) for the
evolution operator of the system described by a parabolic-type equation
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is given, e.g., in Reference [32]. For the Schrodinger equation, the proof
is known only if operator H is a sum of a function of coordinates and a
function of momenta:

H =H,(¢) + H,(p). 2.16)

Namely, the Hamiltonians of the (2.16) type are used in nonrelativistic
gquantum mechanics.

We denote the functional integral, defined as the N—co limit of
expression (2.9}, by the symbol

J- “ exp (iS[z, ,t])[]d—l—)(t—z)’;d—q@. (2.17

q(t0)

This form is convenient but it does not reflect the fact that in the prelimit
expression (2.9) the number of integrations over momenta is higher by
one order than that over the coordinates.

Let us remark that the functional integral, defined by formula (2.10) as
a limit of the finite-dimensional one, depends on the method of approxima-
tion to the (g(z), p(7)) trajectory. This is connected with the fact that we

~ bhave no natural prescription for the ordering when replacing the arguments

of the function H(p,q) by noncommuting operators § and p. However, the
operaiors with a physical meaning correspond, as a rule, to the functions
for which the replacement of arguments by noncommuting operators leads
to an unambiguous results. This is true for the energy operator in
nonrelativistic quantum mechanics which is equal to the sum of a quadratic
function of momenta and a function of coordinates. In such cases the
functional integral leads to unambiguous results, too.

We generalize the functional integral formalism to a system with an
arbitrary finite number of degrees of freedom.

The action of a mechanical system with ndegrees of freedom has the form

n
S[to.t] =I( > p@‘—H(q,p))dt. (2.18)
i=1
Here ¢' is the ith canonical coordinate; p, is the canonically conjugated
momenturr;

H{g,py=H(g",...,q";p,,...,p,) is the Hamiltonian.

By definition, the functional integral for the evolution operator matrix
element is a limit of the finite-dimensional integral obtained from (2.9) by
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the replacement

n n

@2n)~ N> (2m)~ dg,— H dqtiz ; dp, = H dpi,kv (2.19)

where g}, are the values of the ith coordinate at the point 1, (k = 1,...,N — 1)

and p,, are the values of the ith momentum on (r,_,,t,) interval. It is

necessary to keep all the coordinates q',...,4" simultaneously fixed at
both ends of the time interval {t,,t].

We will denote the functional 1ntegra1 defined in such a way by the
symbol .

exp (IS)H 1'[ (2.20)

qt’)=q’

J = d61‘(t) dp.(t)

3. QUANTIZATION OF SYSTEMS WITH CONSTRAINTS

* In the previous section the quantization of finite-dimensional mechanical
systems with the action of Hamilton type (2.18) was studied using the
technique of functional integration. Field theory can be looked upon as
an infinite-dimensional analogy of a mechanical system with action (2.18).
In such an approach the theory of gauge fields is an analogy of mechanical
systems with constraints. The quantization of finite-dimensional systems
with constraints requires the modification of the functional integral.

A classical action of the finite-dimensional mechanical system with
constraints

a=1

=J(,=ilm‘—ﬂ(q,p)—

also contains, besides the coordinates g and momenta p, the variables 4,,
which come in linearly and play the role of Lagrange multiplicators. The
coefficients ¢%q,p) have the meaning of constraints. The variables g,p
generate the phase space of dimension 2a. The number of constraints shall
be denoted as m. We suppose that m < n and that the constraints ¢* and
Hamiltonian H are in involution, ie., that they fulfil the conditions

) Aafp"(q,p)) G.1)

{H,¢"}=ZC§¢”; {o° <p"}—2c“” J 32)

In these formulae c§, ¢ are functions of g and p and {f, q} is the Poisson
bracket:

e NN
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1.9} = Z ipiq iqen)

The system of equations of motion for action (3.1) contains, besides
canonical equalions

(o) o

=7 + » L 3.4
( pl agl ; 8 { ( )
also the constraint equations
0(q.p)=0, a=1,....m : (3.5)

It is apparent from Equations (3.5) that some of the variables g,p are
spurious, 1.e., the solution of constraint equations often turns out to be
rather difficult. It is therefore desirable to have a formalism where explicit
solutions of constraint equations are not required.

Constraint Equations(3.5)define the surface M of the 2n — m dimensions
in phase space I". The,involution conditions{(3.2) guarantee, for arbitrary
functions 4,(z), the fulfilment of constraint conditions (3.5), provided those
equations are satisfied for initial conditions. In other words, a trajectory
which starts on the manifold M does not leave it.

We shall regard as observables on the manifold M the variables which
are not influenced by arbitrariness in the choice of 4,(¢). This requxrement
is fulfilled by the functions f(q,p), which obey the conditions

=Y dyo". (3.6)
b

Indeed, in the equations of motion for those functions

={H, [} +2 4o f} 3.7

the 4 ,-depending terms vanish on M.

The function f(q,p) defined on M and satisfying conditions (3.6) does
not in fact depend on all variables. Conditions (3.6) can be looked upon
as a system of m differential equations of the first order on M for which
Equations (3.2) are conditions of integrability. The function f is therefore
unambiguously defined by its values on a submanifold of the system’s
initial conditions which has the dimension 2n—m)—m=2(n—m). It is
convenient to take as such a manifold a surface I'*, defined by constraint
equations (3.5) and m additional conditions:

%@,p)=0,a=1,. (3.8)
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The functions y, must satisfy the condition

det [[{x, @} I #0, (39

because only in that case can I'* play the role of an initial surface for
Equation (3.6). It is convenient to suppose that y, mutually commute*:

{Xa 2o} =0. (3.10)

In such a case it is possible to introduce canonical variables onto the
manifold I'*. Indeed, if condition (3.9) is satisfied, then, using canonical
transformation in I', we can introduce a new set of variables where g,
take a simple form:

Lap)=py a=1,...,m, (3.11)

where p,(a = 1,...,m) is a subset of canonical momenta of the new system
of variables. Condition (3.9) can be written, in terms of the new variables,
as

£0, (3.12)

det %‘0—5

and the constraint Equation (3.6) can therefore be solved with respect to
¢°. Finally, the surface I'* is given by the equations

p.=0, ¢ =4q(@*p" (3.13)

on I', so that ¢* and p* are independent, canonically constructed, variables
on I'*. .

Let us study now what the functional integral for the finite-dimensional
mechanical system with constraints looks like. We shall introduce addi-
tional conditions y,(q, p) so that relations (3.9) and (3.10) are satisfied. The
basic assertion is that the evolution operator matrix element is given by
the functional integral

fexp{ if (ip.a‘—H(q,p)dr}ndu(qm,p(r», (3.14)

\ to \i=1

where the integration measure is given by the formula
du(r) = 2ry" " det || {x.. 0*} | T[8(x)d(¢®) ] dg'(x)dp(0). (3.15)
a i=1

*As from now, we shall mean by a commutator of functions f and g on phase space the
Poisson bracket { g} (3.3). The functions commute if the Poisson bracket is equal to zero.



