CAD/ Graphics'93 Beijing

New Advances in Computer Aided Design & Computer Graphics

Vol.2

Ed: Zesheng Tang

International Academic Publishers

(京)新登字 141 号

Published and Distributed by International Academic Publishers 137 Chaonei Dajie, Beijing 100010 the People's Republic of China

Copyright © 1993 by International Academic Publishers

The book has been photographically reproduced from the best available copy. The papers were not refereed but were reviewed for their technical contents. Editing was restricted to matters of format, general organization and retyping.

The editors assume no responsibility for the accuracy, completeness or usefulness of the information disclosed in this volume. Unauthorized use might infringe on privately owned patents of publication right. Please contact the individual authors for permission to reprint or otherwise use information from their papers.

First edition 1993

Zesheng Tang

New Advances in Computer Aided Design & Computer Graphics

-Proceedings of the Third International Conference on CAD and Computer Graphics Vol.2

ISBN 7-80003-275-6 / TP • 9

Printed by the Printing House of China Building Industry Press

Proceedings of the Third International Conference on

CAD and Computer Graphics

August 23 – 26, 1993, Beijing, China

Sponsored by: China Computer Federation

Tsinghua University

Cosponsored by: National Natural Science Foundation of China,

Internatinal Federation of Information Processing,

Information Processing Society of Japan, China Engineering Graphics Society.

CONFERENCE ORGANIZATION

General Chaiman:

Xiaoxiang Zhang (China)

Program Committee

Chairmen:

Zesheng Tang (China)

Jose, L. Encarnacao (Germany)

International Members:

Hojjat Adeli	(USA)
Judith R. Brown	(USA)
Chung-Kuan Cheng	(USA)
Jason Cong	(USA)
Umberto Cugini	(Italy)
Steve Cunningham	(USA)
Bianca Falcidieno	(Italy)
Mark Green	(Canada)
Richard Guedj	(France)
Hiromi Hiraishi	(Japan)
Leo Pini Magalhaes	(Brazil)
Sudhir P. Mudur	(India)
Seiichi Nishihara	(Japan)
Philip K. Robertson	(Australia)
Kenneth C. Smith	(Canada)
Wolfgang Strasser	(Germany)
John Staudhammer	(USA)
Jose Carlos Teixeira	(Portugal)
Daniel Thalmann	(Switzerland)
Nadia M. Thalmann	(Switzerland)
Sakae Uno	(Japan)
Carlo E. Vandoni	(Switzerland)

Domestic Members:

Jiaqi Fang	Guangyuan Shi	Jiaoying Shi	Mingye Liu
Shenquan Liu	Jiaguang Sun	Qiangnan Sun	Xianlong Hong
Sikun Li	Daoning Ying	Enhua Wu	Quanyuan Wu
Zongkai Lin	Ji Zhou	Tiji Zhou	Rongxi Tang
Pushan Tang	Hongxi Xue	Daozheng Wei	Guozhong Dai
Shihai Dong			

Organizing Committee:

Chairman:

Weidou Ni

Vice-Chairmen: Bing Wang

Members:

Ge Zhao

Huiyu He

Hesheng Yu

Rongling Sun Wei Yang

Preface

This proceedings contains the papers presented at the Third International Conference on CAD and Computer Graphics which will be held on August 23-26, 1993 in Beijing, China.

The response to the call for papers of this Conference was overwhelming. There are 227 papers from more than 20 countries and regions submitted to this Conference.

Paper selection was completed by the Program Committee of this Conference. The Committee was co-chaired by Professors Zesheng Tang and Jose L. Encarnação. Every paper was reviewed by at least two committee members and was reviewed by a third referee if the two original reviews differed. Special effort was made to have committee members reviewing papers in their area of expertise. After the reviews were completed, the Program Committee had a meeting in January 13-14, 1993 in Beijing to discuss and decide the acceptance and rejection of reviewed papers. As the result, 166 papers were accepted for presentation at this Conference and publication in this proceedings.

All the papers in this proceedings are categorized in to the following 8 subject areas:

- Computer Graphics
- User Interface
- · Computational Geometry
- · Geometric Modeling
- Electrical CAD and CAT
- Intelligent CAD
- CAD Application
- · Image Processing and Multimedia

The papers are compiled in accordance with the above group classifications and the sequence of their presentation at the Conference.

The basic goal of this Conference is to promote international scientific information exchange among scholars, experts, researchers and developers in the fields of CAD and Computer Graphics. I would like to express appreciation to the invited speakers for their interesting presentations on advanced research work and application in CAD and Computer Graphics. I world like to take this opportunity to repeat my warmest thanks to the authors of all the papers for their contributions to this Conference.

The large number of submissions exacerbated the normally tedious task of paper selections. The committee members and reviewers must be recommended for their extensive efforts.

I world like to express thanks to Professor Jose L. Encarnacao for his help in papers submissions and paper reviews and his guidance throughout the process for putting these papers together.

Before the publication of this proceedings, I world like to express sincere appreciation to Ms. Wei Yang for her extensive work in collection papers, sending the information into computer and verification of printing quality. In addition, my students, Mr. Zhigang Xiong, Weidong Min,

Yong Zhou and others have done a lot of work for the publication of this proceedings. Otherwise, it is impossible to publish this technical documentation.

Finally, I wish to express many thanks to the International Academic Publishers for the quality and appearance of this proceedings.

得审定

Zesheng Tang Co-chairman of Program Committee CAD / Graphics'93

CONTENTS

Vol. 1

Invited Papers	
Advances and Challenges in Scientific Visulization	-1
Judith R. Brown	
Recent Advances in Design Automation Technology	-1
Bryan Preas	
Navigating and Exploring — The New Paradigms for Next Generation Graphics User	-1
Interfaces (GUIs)	
J. Encarnacao	
Hair and Clothes for Synthetic Actors	-1
Nadia Magnenat Thalmann	
Autonomous Virtual Humans in Virtual Worlds	-1
Daniel Thalmann	
1. Computer Graphics	
CG Simulation of Natural Shapes of Botanical Trees Based on	5
Heliotropism and Dormancy Break	
Norishige Chiba, Shunichi Ohkawa, Kazunobu Muraoka, and Mamoru Miura	
BD Flowers Generation	1
Hong Wu and Yunhe Pan	
A Specific System for Visualizing Volume Data	5
Jun Yuan and Zesheng Tang	
A Physically Based Modeling of Fluid	9
Zen-Chung Shih and Yi-Chou Chuang	
mprovement to the Disambiguity by Topological Detection in Isosurface Generation	24
Enhua Wu, Ruirong He and Wencheng Wang	
An Approach to Generate Fractal Images and Its Application in Image Encoding	0
Gang Chen, Hui Yi and Jiaoying Shi	
distribution and the state of t	4
Buyun Zhang	
The Research and Application of Computer Animation	9
Yuan Shi and Xinyuan Huang	

Natural Phenomena Simulation Based on Stochastic	1
Spline Approximation	
Nailiang Zhao and Yiweng Jin	
A Unified Framework for the Motion Manipulation	5
of Articulated Figures with the TRACK System	
Ronan Boulic, Zhiyong Huang, Nadia Magnenat Thalmann and Daniel Thalmann	
Visualizing 3D Velocity Vector Fields By Volume Rendering	1
Jian Feng, Shihai Dong and Yaosong Chen	
DGPSE: A Distributed Graphics Processing Support Environment	4
Zhigeng Pan and Jiaoying Shi	
Octree Construction By Translational Sweep of a Quadtree	3
Shinine Yang and Ruenrone Lee	
Direct Integration in Volume Rendering	4
Sili Wen, Weiqing Tang and Shenquan Liu	
A New Algorithm for Real-Time Image Generation of Quadratic Surface)
Binghua Chen, Zhiquan Cai and Xujun Qing	
Interactive Relief Shading on Graphics Workstations	5
Philp K. Robertson, Peter A. Fletcher and Chris Gunn	
A Dataflow Architecture for Scientific Visualization)
Wenli Cai and Jiaoying Shi	
Simulation of Clouds As Stochastic Density Fields	į
Lin Chen and Yuguo Wang	
A New Approach towards Keyframing: One Spline with Speed Control	
Siyi Yang, Hua Li and Shenquan Liu	
Muscle Based Human Body Deformation	i
Jianhua Shen, Nadia Magnenat Thalmann and Daniel Thalmann	
Natural Mountain Simulation Based on 3-D IFS	
Hongwei Tong, Yiwen Jin and Wei Gao	
A Multi-Mode Animation Language for Visualizing the Results in Scientific Simulation 106	,
Huanye Sheng and Wenjun Zheng	
A Framework for Modeling the Human Muscle and Bone Shapes	
Douglas E. Dow and Sudhanshu K. Semwal	
A Progressive Radiosity Algorithm for Environments with Curved Surfaces	
Hujun Bao and Qunsheng Peng	
Intelligent Animation System	
Huadong Ma and Shenquan Liu	
The Synthesis of a Cavern with Eroded Stalactites and Stalagmites	
Ming Ouhyoung and Chuankai Yang	
Distributed Processing Approaches to Shading in Image Space	
Zhiqiang Lao, Zhigeng Pan and Jiaoying Shi	

A UIMS System Based on X-Window	223
Xuexian Gong, Jingyun Cheng, Yiquan Ni and Lin Fang	
Parallel Processing of User Interface Systems	227
Tao Li	
The Concurrent Tag Widget: Adding Concurrent Control to X Toolkit-Based	233
Applications	
Hansong Zhang and Shenquan Liu	
3. Computational Geometry	
Geometric and Computational Aspects of Injection Molding	237
Prosenjit Bose and Godfried Toussaint	
Generate Triangular Meshes in Planar Convex Regions Based on Mesh	243
Grading Propagation	
Weidong Min, Zesheng Tang, Jiaguang Sun and Yujian Chen	
Computing the Shortest Watchtower of a Polyhedral Terrain	249
in O (nlogn) Time	
Binhai Zhu	
A Delaunay Triangulation Method for Point Sets Within Arbitrary Planar Domains	255
Zhigang Cai and Qijie Jin	
Packing— A Compacting Positioning Algorithm	260
Ramon Rizo Aldeguer, Juan Manuel Garcia Chamizo and M.Mar Pujol Lopez	
Rotational Movability for Polygons	266
Zhongping Qin and Huanguo Zhang	
An Object Oriented Geometrical Kernel for Automatic Packing of Irregular Shapes	270
Joao Lourenco Fernandes and Joao Carlos Bernardo	
Smoothly Filling in an N-Sided Hole with Rectangular Surface Patches	276
Hua Li and Shenquan Liu	
Fast Algorithms for Greedy Triangulations	279
Cao An Wang	
Degree Reduction of Bezier Surface Patches	285
Shimin Hu, Guozhao Wang and Tongguang Jin	
Free-Form Surface Generation System with the Capability	290
of G ² Continuous Interpolation	
Kenjiro Takai Miura and Kuo-King Wang	
Fairing B-Spline Surfaces with a Minimum Energy	297
Guohua Peng and Pengji Yang	
Improved Method for Rational Bezier Interpolation with Conic Segments	299
Aleksander Vesel, Niko Guid and Borut Zalik	
An Approach to Visualization of Hypersurfaces	303
Jianrong Tan, Qunsheng Peng, Guangren Zhou and Qiong Lu	

Co	nvex Rational Cubic Spline Interpolation	30
	Baosheng Kang and Rurong Zhou	
C^2	Rational B-Spline Surfaces with Tension Control	31
	Muhammad Sarfraz	
ΑI	Planar Convex Hull Algorithm with Time Complexity Subject to Point Locations	32
	Chao Deng and Mengtao Shen	
Int	erpolation with Rational Cubic Splines and Constraints Planes	32
	B. H. Ong	
Fin	ding the Asymptotes of an Algebraic Curve	333
	Sanyuan Zhang, Jingji Xu and Guiling Zhu	
Kn	otty: A Video about B-splines (Part I)	337
	Jonathan Yen	
Sol	id Modelling and Geometric Constraints	343
	Fei Gao and Shanghui Ye	
Ge	ometric Construction for Smoothness Between Adjacent Bezier Surface Patches	349
	Xijun Zhou, Haichen Yang and Pengji Yang	
Αħ	New Technique to Generate Partial Derivatives From Scattered Data	353
	Hong Liu and Kunda Zhang	
4.	Geometric Modeling	
Exp	pansion of the Solid Modeler's Functions for Use in Designing	357
AN	Model of the Human Body	
	Noriyuki Uda, Fumitaka Kimura, Shinji Tsuruoka, Yasuji	
	Miyake, Song Shunlin and Mitsunori Tsuda	
An	Improvement to Gregory Patch in Smooth Blending	364
of E	Sezier Patches	
	Tao Ning and Rongxi Tang	
ΑN	Multiple Perspective Object Oriented Model for Engineering Design	368
	G. Pierra	
3D	Reconstruction from a Perspective Image	374
	Xiuwei Zhao and Jiaguang Sun	
The	Assistance of Graphic Numerical Facilities in the Job of Measuring	379
Fre	e Forms Keeping High Accuracy	
	Sanchez V. Jose	
The	Application of Triangular Rational Bezier Patches in CAD / CAM System	384
	Zhigang Xiong and Jiaguang Sun	
Dig	itizing and Modelling for 3D Surface	390
	Yisui Jiang and Xiaomei Sun	
Bler	nding Polyhedra with Sweeping	394
	Yuefu Wang Jiaguang Sun and Vaihuoi Oin	

Variation of Geometry and Parametric Design
Chun Du, Manfred Rosendahl and Roland Berling
An Approach to Feature Based Parametric Solid Modeling
Wen Xiang, Tongjin Huang, Xiaopin Qian, Jun Yu and Ji Zhou
Accelerating Geometric Intersection by Parallel Processing
Changgui Yang
Geometric Modelling from CT Scans for Stereolithography Apparatus
Desmond J. Walton
A 3D Modeling System for Ceramic Products
Cheng Yu, Xialing Zhang, Shiying Shen and Wen Yang
Vol. 2
5. Electrical CAD and CAT
Performance-Driven Clock Net Routing
Nan-Chi Chou and Chung-Kuan Cherg
A Fast Placer for Wafer Scale
Wenjie Ren, Fujie Cheng, Shikung Lee, Zhijiang Yang, Ji Miao and Xubang Shen
Planar Routing on a Pin Grid Array Package
Chia-Chun Tsai and Sao-Jie Chen
GALSTAR Gate Array Routing System
Jianhua Shao, Jiarong Tong and Pushan Tang
Performance Layout Based on Moment Matching Method
D. Zhou, F. Tsui and D. S. Gao
An Edge Sorter Implemented by Hardware for VLSI Verification
Yunfeng, Shunmao Zhang, Kaihe Zhang and Pushan Tang
A Neural-Based Placement Technique for Rectilinear Application
Ray-I Chang, Jen-Chi Chang and Pei-Yung Hsiao
Parallel Process of Layout Verification on a Transputer System
Qiming Wu, Hui Dang and Zeyi Wang
A Cell Generator-Based CAD Framework for VLSI Layout Synthesis
Martin C. Lesebvre
A Novel Approach to Feedthrough Pin Assignment Problem Using
Vertical Channel Model
Pujiang Huang and Xianlong Hong
An Optimal Algorithm on Minimum Rectangular Partition of VLSI Layout
Jin-Tai Yan and Pei-Yung Hsiao
REBD-WP: A Routing Environment of Balanced delay for Wave Pipelining Design 489

Shuming Chen, Yongjie Sun, Xingjiong Peng and Fujie Chen	
Free Space Optoelectronic System Placement Based on Quadratic Approximation	493
J. Fan, T. Hamada, C. K. Cheng and S. H. Lee	
Parallel Boundary Element Calculation of Three-Dimensional Resistance and	500
Capacitance	
Yanhong Yuan, Zeyi Wang and Qiming Wu	
The Design and Implementation of the Gridless Algorithm with Bidirectional	505
Expansion	
Xuezeng Pan, Di Yan and Lingdi Ping	
Heuristic Reachable-State Computation for Sequential Network Minimization	509
Kuang-Chien Chen	
A New Approach to CAD Tool Control	515
Shaye Ye and Sikun Li	
Logic Synthesis for Testability	520
C. Shi and B. R. Wilkins	
A Global Scheduling Algorithm for CDFG with Nested Conditional Branches	526
Ming Su, Hongxi Xue and Xianlong Hong	
Functional Partitioning During Top-down Design	531
Frank Vahid and Daniel D. Gajski	
A Scheduling Algorithm for the Behavioral Synthesis of ASICS	537
Chun Li, Mingye Liu and Cangpu Wu	
LOD: Automatic Generation of Logic Diagrams	541
Xiaotian Cui and Daozheng Wei	
The Net Matching Problem in High Performance Microelectronics Design	546
Robert J. Carragher, Chung-Kuan Cheng and Xiao-Ming Xiong	
Fault-Tolerant Protocols of Termination Detection for Distributed System	552
Youli Min and Zhongcheng Li	
MCM-Based Architectural Synthesis of IIR Digital Filters	557
Haigeng Wang, Nikil Dutt and Alexandru Nicolau	
A Switch-Level Fast-Timing Simulator	565
Lei He, Kaihe Zhang and Pushan Tang	
Minimum One-Shot State Assignment for Asynchronous Sequential	571
Circuits Using SBDD	
Kwon, Yong-Jin and Yajima, Shuzo	
Implement Digital / Analog Mixed-Mode Simulation in SPICE	577
Lei He, Song Chen, Kaihe Zhang and Pushan Tang	
Improving Load Balancing Property During System Reconfiguration	582
Ting-Ting Y. Lin	
Design Parameter Directed Scheduling in Data Path Synthesis	588
Yifeng Wang, Jiasheng Xu, Xianlong Hong	

Logic Minimization and Technology Mapping in IDDES	595
Jihua Chen and Shaoqing Li	
An Optimal Performance-Driven Technology Mapping Algorithm for LUT Based	599
FPGAS Under Arbitrary Net-Delay Models	
Jason Cong, Yuzheng Ding, Tong Gao and Kuang-Chien Chen	
Technology Mapping for FPGA Using Generalized Functional Decomposition	605
Kuo Hua Wang, Ting Ting Hwang and Cheng Chen	
Formal Verification of Single Phase Behavior of KUE-CHIP2 Microprocessor	611
Hiromi Hiraishi, Tatsuya Nakac and Kiyoharu Hamaguchi	
Design of Detecting Fault Task for Computer Control System	617
Xinhua He, Dong Xiang, Xiaotiang Cui and Daozheng Wei	
Parallel Built-in Self Test and Pipelined Test Scheduling for Multichip Modules	622
Huoy-Yu Liou and Ting-Ting Lin	
Fault Effect Observability and Assignment Compatibility for Hierarchical	628
Testability Analyses	
Dong Xiang, Neng Wan and Daozheng Wei	
A Test Generation Algorithm Based on Boolean Difference and Cubical Operations	634
Hongxi Xuc and Yanan Zhang	
TeIF: A Data Interchange Format in Test Development System (TeDS)	638
Sun Yu Ning and Shi Wan Chun	
Verification Testing of Sequential Circuits Using Hierarchical Models	642
Zejian Liu and Tianrong Zhou	
A Cost-Effective BIST Scheme for Embedded RAMs	647
Xiaowei Li and Fuqing Yang	
Practical Design of CMOS Circuit for Stuck — Open Fault Testability	652
6. Intelligent CAD	
Design and Implementation of a Knowledge-Based CAPP / CAM System for	656
Plate Model Manufacturing	
Kaili Tsai and Yaoxuc Zhang	
Realization of Intelligent CAD for Powered Support by Expert System	660
Technology and CADDS	
Jianguo Yao	
Visual Knowledge for Intelligent Drafting System.	665
Jianxiang Wang and Shenquan Liu	
PADS — A Parametric Design System Based on Geometric Reasoning.	670
Shuming Gao, Zhengming Chen and Qunshen Peng	
Approach to Method of Computer Aided Concept Design (CACD)	675
Shouqian Sun, Jiang Li, Haijun Deng, Zhijun He, Guoliang Yu and Hongbo Shen	
\sim 10 \sim 12	

Knowledge Representation and Uncertainty Reasoning Model in Intelligent	678
Mould & Dic Design System	
Erjian Wang, GuangEn Pan and Daoning Ying	
7. CAD Application	
Tolerance Analysis and Synthesis in CAD: The Problems and Solutions	682
Genbao Zhang and Michel Porchet	
A Three Dimensional Computer Aided Design and Solidification Simulation	688
System of Shaped Castings for Foundry	
Tao Jing and Baicheng Liu	
Message Simulation by ALADDIN / OOB CAD Tools	694
Algirdas Pakstas and Sonata Pakstiene	
Design and Implementation of the Further Development Language of CAD System	700
Jianmin Wang and Jiaguang Sun	
Finite Element Mesh Generation and Interface with Geometric Modeling	705
Yuanxian Gu, Gengdong Cheng, Haiyan Zhang and Dongxu Zhang	
Data Storage Methods for Surfaces with Rotational Symmetry	710
Marion S. Cottingham	
Computer Techniques to Design of Mechanical System	714
Qingku Yuan, Limin Hong	
An Integrated CAD System for House Service System in Power Plant	718
Guoqing Li and Jinlai Guo	
Lathe Simulator with Tutoring and Learning Capabilities	722
Marion S Cottingham	
A Fully Automatic 3D Finite Difference Mesh Generator for Arbitrary Complex	727
Geometries and Its Application in Solidification Simulation	
Zhiqiang Gao, Qibo Mei and Baicheng Liu	
Railway Location CAD Using Object-Oriented Programming Technique	732
Li Zhang and Yucai Deng	
Automatic Selection of Tools and Their Sequences for Numerically Controlled	738
Turret Punch Press Machine	
Kyung Ho Cho and Kunwoo Lee	
Computer-Aided Tolerance Analysis and Optimal Tolerance Design	745
Xiangli Zhang, Tongjun Huang, Youshu Kang and Ji Zhou	•
*	750
Jiaxiang Zheng, Xiaojun Gao and Guoqiang Yuan	
	756
Jiajun Ren, Fenling Wu and Xiaoqian Liu	
3D Rendering in Computer Aided Optical Design of Microcomputer	759
Rong Liao and Guovao Dong	

Project and Implementation of a Design Management and Cooperation Model	63
Cirano Iochpe, Maria Aparecida Castro Livi, Nelson Mendonca Mattos,	
Joachim Thomas and Fermando de Ferreira Rezende	
Management of Consistency Constraints in a CAD Database System	70
Farid Nourani, Leo Pini Magalhacs	
On the Version Management in Engineering Databases	77
Pciyao Nic	
Design and Drawing for Mechanical Parts with Manufacturing Features	82
Han-Ming Chen and Ren-Tzer Lai	
Collision Detection of Convex Polygons in the Plane	87
Zhixin Shen, Daoning Ying and Erjian Wang	
A Data Structure for Assembly Representation	91
Fei Gao and Shanghui Ye	
Discrete Measuring and Modeling of Sculptured Surface	97
Y. L. Ke	
8. Image Processing and Multimedia	
Software Kernel of Multimedia Computing	99
Yuzhuo Zhong and Yong Guo	
Interactive Environment for Multimedia Processing	05
Ilia K. Georgiev and Olga M. Beltcheva	
IMCAD — A Drawing Reading and Interactive Design System Based on Binary Image 80	09
Process Technique	
Xinyou Li, Weiyi Zhao, Zesheng Tang, Hanwen Huang and Zhige Zhao	
A Global Approach for Line Recognition Based on the Scanned Image of	15
Engineering Drawings	
Jianrong Tan and Qunsheng Peng	
CAD-Based Viewpoint Selection for an Active-Vision System	22
X. He, B. Benhabib, K. C. Smith	
Knowledge-Oriented Recognition of Characters in Engineering Drawings	28
Wenyin Liu	
Design of a Multimedia Database System in Computer-Supported Cooperative Work 82	33
Ning Gu, Zongkai Lin and Yuchai Guo	
The Implementation Techniques of Audio in OpenEditor	36
Dan Xu, Zhigeng Pan and Jiaoying Shi	
Sterco 3D Visualization Imitation System of Image-Forming Process and	11
Aberration in Optical System	
Chaoyong Guo, Guoyao Dong and Xiaoying Yan	
Color Dither Technique for Frame Buffer Display	15
Shaowu Cheng, Hui Zhao, Guozhong Liu and Limei Zhang	_
Author Index 86	<u> </u>

PERFORMANCE-DRIVEN CLOCK NET ROUTING

Nan-Chi Chou and Chung-Kuan Cheng Department of Computer Science and Engineering; University of California, San Diego; La Jolla, CA 92093-0114 U. S. A.

ABSTRACT

Many existing zero-skew clock net construction algorithms have focused on minimizing the wire length in Manhattan space. However, for performance-driven designs, as microelectronic manufacturing technology advances, routing can be performed in non-Manhattan spaces as well. Consequently, we propose a general algorithm for zero-skew clock net synthesis, which works in any routing space. We first devise a simulated annealing approach to construct a zeroskew clock tree under the Elmore delay model. A simple yet powerful tree grafting scheme is designed as the perturbation function to generate new neighborhood configurations in the annealing process. Additionally, we propose a Steiner point placement optimization procedure to refine the results generated by the previous stage. Experimental results show that our algorithm can achieve average wire length savings of 23.95% compared to those of the previous best work based on the same benchmarks.

INTRODUCTION

The increase in complexity of synchronous VLSI systems and Multi-Chip Modules (MCMs) has made the clock signal distribution an important limiting factor of performance enhancement. This is revealed by inequality (1) determined the clock cycle, C_P , of a synchronous system:

$$C_P \ge t_d + t_{skew} + t_{su} + t_{pd}; \tag{1}$$

 t_d is the longest path delay through the combinational logic; t_{skew} , the clock skew, is defined as the maximum difference in arrival times from the clock source to sinks; t_{su} is the set-up time of the synchronizing elements; t_{pd} is the propagation delay within the synchronizing elements⁹. Bakoglu¹ has indicated that t_{skew} may account for more than 10% of the system cycle time in high-performance systems. Advances in VLSI fabrication technology are making feature sizes smaller. Hence, t_{su} , t_{pd} , and t_d will be reduceed significantly making clock skew a more dominating factor in performance consideration.

The H-tree approach^{1,19} is able to minimize the clock skew successfully when the sinks are identical and are placed in a symmetric array. Jackson et al.⁹ generalized the H-tree approach for asymmetric clock sink distributions in the MMM (Method of Means and Medians). Kahng et al. ¹¹ then proposed a recursive geometric-matching algorithm which reduces the wire length of MMM solutions by 5% to 7%. Since length reduction methods such as H-flipping and edge uncrossing are used in their algorithm, it has exponential time complexity. Li and Jabri ¹³ reduceed the time complexity of the previous algorithm to $O(n^2 \log n)$ using the Voronoi diagram. The algorithm also achieved an average 8% wire length savings over those of Kahng et al. by adding optimization techniques such as L-shaped pairing. However, all these algorithms ^{9,11,13} balance the wire length rather than balance the real clock delay.

Tsay¹⁷ initiated a new era for zero-skew clock net routing algorithms by devising a zero-skew merging scheme using the Elmore delay model for delay approximation in addition to length-balancing. The algorithm recursively combines a pair of zero-skew subtrees at a tapping point to produce a larger zero-skew tree. However, the total wire length is not optimized. Although a skew-free clock circuitry significantly enhances a system's performance by eliminating t_{skew} from the clock cycle inequality (1), total wire length is still a critical parameter. Excess interconnect not only increases layout area and reduces the overall routability, but also results in greater net capacitance, hence requiring more power for clock signal distribution.

Consequently, Chao et al.4 proposed a two-phase algorithm which achieves an average 10% wire length reduction from that of Tsay based on the same benchmarks in Manhattan space. Since, in Manhattan space, the set of tapping points satisfying the zero-skew property with respect to the two given children is a line segment, a "tree of merging segments" can be built bottom-up by using the same zero-skew merging scheme proposed by Tsay17. Then a delayed merging method is applied to the tree of segments, with the freedom of choosing different merging positions on each merging segment, to minimize the wire length while maintaining the skew-free environment. Boese and Kahng³ independently developed a DME (Deferred-Merge Embedding) algorithm which is in principle identical to that of Chao et al. By combining the DME with a length-balancing clock tree topology generated from a previous work¹¹, the composite algorithm resulted in an average 12% wire length reduction from that of Tsay¹⁷.

Notice that the latter two algorithms exploit the specific

properties of Manhattan space. Because multiple routing layers is not uncommon in current VLSI technology, and the state-of-the-art MCM fabrication is capable of coping with over fifty routing layers, we should consider routing of wires in octolinear and Euclidean spaces as well. With these considerations in mind, we propose a general clock tree construction algorithm for the current diversified CAD environment. We also adopt the Elmore delay model as the basis of our clock skew calculations. Our algorithm is general in that it is readily applicable to various routing spaces, from Manhattan to Euclidean. We have achieved average wire length savings of 14.31% and 23.95% in Manhattan and Euclidean spaces compared to the previous best results.

PROBLEM FORMULATION

In CAD physical designs, the placement phase determines locations of synchronizing elements of a given circuit. We call these positions the sinks of a clock net, and denote the sink set by $C_{net} = \{s_1, s_2, ..., s_n\}$, where $C_{net} \subset \mathbb{R}^2$. A clock tree is a rooted binary tree $T(C_{net})$ over the clock net C_{net} with the clock source s_0 being the root and C_{net} being the leaves of $T(C_{net})$. Let the edges in the clock tree be directed away from the source; then an edge euv connects parent u and child v. The distance between u and v, $\delta(u, v)$, is a function determined by the current routing space. For example, in Manhattan space $\delta(u, v) = |x_u - x_v| + |y_u - y_v|$, and in Euclidean space $\delta(u,v) = ((x_u-x_v)^2+(y_u-y_v)^2)^{1/2}$. The wire length of e_{uv} , denoted by $\ell(u, v)$, is greater than or equal to $\delta(u,v)$. The length can be greater than the geometric distance because sometimes we have to elongate the wire to maintain the zero-skew property. We define the cost of a $T(C_{net})$ as the total length of all edges in $T(C_{net})$.

Let $t_d(s_0, s_i)$ denote the signal propagation time of the unique path from source s_0 to sink s_i . The skew of a clock tree $T(C_{net})$ is determined by equation (2).

$$Max (|t_d(s_0, s_i) - t_d(s_0, s_j)|), \forall i, j \in C_{net}.$$
 (2)

We define a clock tree $T(C_{net})$ as a zero-skew clock tree or ZS tree if its skew is zero. In this paper, we follow assumptions made implicitly or explicitly in previous ZS tree algorithms^{3,4,17}. First, we assume a constant-width wire; hence only wire length counts. Additionally, we assume the interconnect delay parameters are identical for all metal routing layers, and ignore via capacitances and resistances. Finally, we assume single-staged clock trees. The ZS tree construction problem can now be stated as:

Given a clock net C_{net} and a routing space, construct a zero-skew clock tree $T(C_{net})$ with minimum cost.

1. Delay Models

In the linear model, the delay along a path is proportional to the path length. Although less accurate, it has been adopted by many clock tree construction algorithms $^{9.11,13}$. On the other hand, the Elmore delay model uses a distributed RC tree for improved accuracy. Let α and β denote the resistance and capacitance per unit length of wire, c_g , be the gate capacitance of sink s_i , and c_v be the node capacitance of v. Then the lumped capacitance C_v of the

subtree rooted at v can be calculated by the following recursive formula 15,17 :

$$C_{v} = \begin{cases} c_{g_{i}} & v \text{ is a sink } s_{i} \\ c_{v} + \sum_{w \in children(v)} (\beta \cdot \ell(v, w) + C_{w}) & \text{otherwise} \end{cases}$$
(3)

The propagation delay of a ZS tree $t_d(s_0, s_i)$ can thus be computed as follows:

$$t_d(s_0, s_i) = \sum_{e_{uv} \in path(s_0, s_i)} \alpha \cdot \ell(u, v) \left(\frac{\beta \cdot \ell(u, v)}{2} + C_v \right) \tag{4}$$

We will adopt the Elmore delay model for a better delay approximation in this paper.

GENERAL ZS TREE CONSTRUCTION ALGORITHM

Our algorithm contains two phases. In the simulated annealing ZS tree construction phase, we use Tsay's zero-skew merging scheme¹⁷ to construct a ZS tree. A tapping point is used to merge two ZS subtrees into a larger ZS tree with an equal propagation delay. In this phase, we search the tapping point only within its corresponding merging regions^{3,4} in which every point has the minimum total distance to the two roots of the merged subtrees. The search space within the merging regions simplifies the tapping point calculation; hence, it fits better into the simulated annealing engine when searching a good ZS tree topology. In the second phase of our algorithm, we propose a Steiner point placement optimization technique to further refine the results generated by the first phase.

1. ZS Merging Scheme under the Elmore Delay Model

To connect two zero-skew subtrees rooted at nodes a and b while ensuring a ZS tree rooted at v involves determining the right placement for the new root v. Let the subtrees rooted at a and b have capacitances C_1 and C_2 , and delays $t_1 = t_d(v, a)$ and $t_2 = t_d(v, b)$ respectively. Let $\ell(v, a) = \gamma_1$ and $\ell(v, a) = \gamma_2$. From equation (4), to maintain a ZS tree, the placement of v must satisfy the following equality:

$$\alpha \gamma_1 (\frac{\beta \gamma_1}{2} + C_1) + t_1 = \alpha \gamma_2 (\frac{\beta \gamma_2}{2} + C_2) + t_2$$
 (5)

Let $\delta(a,b)=m, \ \gamma_1=x, \ \text{and} \ \gamma_2=m-x$. Substituting x and m-x into equation (5) and solving for x, we have

$$x = \frac{t_2 - t_1 + \alpha m(C_2 + \frac{\beta m}{2})}{\alpha(C_1 + C_2 + \beta m)} \tag{6}$$

If $0 \le x \le m$, the placement of v can be found on the interconnect wire of length $\ell(a,b) = \delta(a,b)$, where $\delta(v,a) = \gamma_1 = x$ and $\delta(v,b) = \gamma_2 = m-x$ define the position of v. Otherwise, extra wire must be added to balance the delays of the two subtrees to form a new ZS tree. Let $\ell(a,b) = m' > \delta(a,b)$ be the total wire length of the elongated wire. If x > m, which means $t_2 > t_1$, we should superimpose v with b, and set $\gamma_2 = 0$ and $\gamma_1 = m'$. Now equation (5) becomes

$$\alpha \cdot m'(\frac{\beta \cdot m'}{2} + C_1) + t_1 = t_2,$$
 (7)