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PREFACE

This book has been designed to serve as a text for a Junior-level
course in Engineering. It has been used in the Undergraduate Engineer-
ing program at UCLA for over six years and has gone through many
revisions.

The prerequisites are two years of Calculus, including Differentiai
Equations, and two years of Physics, including Electricity.

There are five chapters which can be covered at a reasonably comfor-
table pace in one quarter (10 weeks, or approximately 40 contact
hours). Chapter 1 begins with the fundamental notion of a System and
its Input-Output description, and proceeds quickly to the main proper-
ties of the Input-Output transformation. Chapter 2 features the Impulse
Response function and its role in the time-domain analysis of linear
systems. The Laplace Transform is introduced in Chapter 3, as a tool in
the s-domain analysis of linear dynamic systems.

We turn next to Signals, beginning with Fourier Series analysis in
Chapter 4. One noteworthy item here is that Mean Square approxima-
tion is introduced via the Orthogonality Principle. More advanced
‘opics, such as Fourier Transforms and the Sampling Principle for
Band-limited Signals are covered in Chapter S.

An abundant supply of problems is provided. Each chapter con-
cludes with a set of problems covering the chapter-material. In addition
a hundred review problems are listed in the Appendix.

Nhan Levan
103 Angeles
Staveh, 1983
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CHAPTER 1. SYSTEMS: THE INPUT-OUTPUT DESCRIPTION

This chépter is devoted to basic properties
of systems with an input-output description.
Inputs and outputs -- or signals -- are
always taken to be deterministic functions
of time.

SYSTEMS: MODEL_ AND MATHEMATICAL MODEL

The term system is often used loosely. Although a
precise definition would be cumbersome, for our purposes
we may regard a system as characterized by "inputs" (“sti-
muli") and "outputs" ("responses").

To study a system one generally begins by forming a
model for it. A model is an idealized version of the sys-
tem and, of course, is not necessarily unique. In other
words, a system can admit more than one model, depending
on the uses envisaged. Here we are interested only in
models described in mathematical terms. Such a description
is often called a mathematical model of the system.

For our purposes, a system is represented by a closed
box with a number of accessible terminals as depicted in

Figure 1.1. Terminals are divided into two groups: input

e CLOSED
BOX

[T

Figure 1.1.
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terminals and output terminals. 'At input terminals, inputs
are applied to the system, while outputs are observed (or
measured) at output terminals.

Inputs and outputs -- or signals -- are taken tov be
time functions, i.e., numerical functions of the time var-
iable t, and are written as x(-) and vy(:), Trespec-
tively. Mor~over, they are also determiniscic, meaning
their values x(t) and vy(t) are completely specified
for each value of the time variable t.

Let x(.) and y(.) be inputs and outputs of a sys-
tem, then the pair of functions (x(-),y(:)) 1is called an

"input-output” pair. If X and Y are allowable input

and output families, then the system is completely charac-
terized by its input-output data, i.e., the family {(x(:),
v(+), %x(+) in X and y(-) in Y}. This is the most general
description of a system. Note that, in general, the
"output' need not be uniquely determined by the "input";
the same input x(:) may have several outputs y(:) in
the family {x(),y(-)}.

A system is said to have an input-output description

if its outﬁut can be expressed completely in terms of the
corresponding input function, i.e., for each =x(-) there

is only one y(-). Such a description conveys the idea

that the output is 'caused" by the input: the system trans-
forms each input intc a unique corresponding output. Thus
for a system with an input-output description we can re-

present its "action" by an (abstract) transformation T[.]

2



acting on an input x(-) to give a unique output y(-):

y(-y = T{x(:)], x(-) in X, y(-) in Y. (1-1)
T[-3 is called an input-output transformation.
Example

Consider the circuit shown in Figure 1.2, Let =x(-)
and v(-) Dbe the input voltage and »utput voltage, respec-
tively. Then a mathematical model for this system is the

differential equation:

re SEL 4 y(r) = x(t) t, <t < %
where the input voltage is applied at some "initial" time
to (say).
R

° ANV J- -

x(e} c yls)

-~ .1- 3

Figure 1.2.

To determine the input-output transformation T[{-] in this
case, we have to solve the differential equation for 1 EDE
Multiplying both sides of the equation by e 7, «a —«%

we find

'

(et y(t)3 = et x(t) t o>t

oje

[




Therefore
t

v(t) = Ke ®t I ae-a(t-c) x(o) do t >ty ,
to
where K 18 a constant to be determimed. 3S:iiting t = t,
we zet

-at
y(to) = K e 0 .

ato
‘e, K= e y(to). Thus the out:. . - L

-a(t-ty) £
Py = e y(ty) + f ae ©
to
t 2t
It is evident from this relation that the output voltage
y(-) depends on the input voltage x(-.-) and the "initial"
condition y(to) -- the voltage across the capacitor C
at the time to. Thus the samevinput x(+) causes many
outputs y(-.), depending on different values of y(to).
Now if we choose y(to) = 0 then clearly, for t z_toz
=4 oo
ot
y(t) = f we~ M=% 3(o) do .
to
We can now say that the circuit transforms each input
voltage x(-) into a unique corresponding output voltage
y(.) = T[x(.)] -- provided there is no voltage (or, equi-

valently, no charge) across the capacitor at the time the

input voltage was applied, and we write



- . - *
Finally, for the ~ame caprcuit, 1f the inpit is tbhe

current  i(- ), Lher the marthemat ical model fs simplv
1
. 10 . ) N
yit) = = E ios) Ay o+ 3(:0; . ooy
e
st as in th o v ious woso, withoo vt
- o dnput-ouln :
t
1 . :
y() = T, vty = 2] i as -
to

-
PROPERTIES OF AN INPUT-QUTPUT TRANSFORMATION

Properties of a system are now studied via those of
its input-output transformation.

First we define.

Definition
A system with an input-output transformation
y(-) = T[x(-)] is said to be linear if

(i) for any scalar k and any x{-) in X:

Tlkx(-)] = kTix(-)1 ;

it

(ii) for any x Y and x,(-) in

10 2

T[xl(-) + x2(-)] = TLXI(-)i + Tixz(-)l




It is evident that (i) and (ii) can be combined intc

the single condition
Tlkyxy () + kpxp()] = kyTlxi ()] + kyTix AL (1.2)

for any scalars kl’ k2 and any xl(-), xz(-) in X.

We must note that in the above we have assumed that
kx(+) and xl(-) + x2(~) are in X for each k and for
any x(;ﬁ, x;(+)  and xo(+) in X. This is the same as
saying that X is a linear space. Similarly Y is also
a linear space, and the above Definition means that T[:]

is a linear transformation from X to Y.

It follows at once from (1.2) that T[O0] = 0. Thus
a/1inear system -~ in the sense of the above Definition —-

must be such that a '"zero' input (x=0) always results in

a_ "zero'" output (y=0). This implies that we are only con-

cerned with the class of systems which are at '"rest"'" --
i.e., zerc input results in zero output ~-- at the time
an input is applied to the systems.

When a system does not have a linear input-ocutput
transformation it is said to be nonlinear.

The next important property is that of a time-invar-

iant (or fixed, or stationary) system. Heuristically

speaking, a system is time-~invariant if an input is shifted
ﬁlong the time axis by an amount 1 (say), then the
corresponding output is shifted by the same amount as
illustrated in Figure 1.3. Clearly x(t-t) for =t > 0

(resp. 1 < 0) is just x(t) shifted to the right (resp.



)
: 4 x{t) y(t)
0 ‘: 0

;

x{t—7) yuj:i////////'///
's t

Figure 1.3.

-

left) by the amount 1. We therefore have the next Defi-

nition.

Definition
A system with an input-output transformation

y(-) = T[x(+)] 1is time-invariant if, for any t and

any T:

y(t) = Tix(t)]
and

z(t} = TIx(t-1)]
Then

z(t) = y(t-1)



Example

Consider
o0
yCo = TIx()T . y(ty = [ (t-0) x(0) do
-~ < t 7
Wo have
T Cet) ) e (hegr xfo=0) de = (i)

ang

Therefore =z(t) = y(t-1t) and the system is time-invariant.

If a system is not time-invariant then it is called
time-varying.

It is important to note that for a time-invariant
system shifting an input along the time axis does not change
the shape of the corresponding output. Therefore, for time-
invariant systems, the origin of time cén always be taken to
be O. In other words, if x(:) 1is applied to a time-in-
variant system at some timé to (£ 0), then_we can always
shift it to the origin and take O +to be the time at which
the input is applied to the system. Consequently we can
take x(t) to be O for t < O.

The next important concept is that of causality or
physical realizability. A system is said to be causal if

the value y(t) at any time t of an output y(') depends

8




only on the values of an input x(-) up to the time t
-- i.e., the values x(g) for each g < t. Thus if wa
regard t as the present time -- i.e., "now" -- then for
a uaﬁsal system prese¢ct value of an cutput can only depenid

on nast and present values of i npul ihat causes it --

but no. on the futu. o valwucs of v input.

If for a causa’ <system and fFo+ any - v(t)‘ oni -
dervads an x(t) - lle., prese. walie 0 caingt ot
savovalt s of inpu. oo ovrool o e
; kLo meneryl o ror 0

utierwise ii is suic (o -have mew. oy .

Example
The system with the input-output transformation

y(-) = Tx(-)1 , y(t) = [ x(o) do , -» <t <
is causal and has memor&, while
vty = | e (0 45y 4o o <t o<
(0]

is not causal. The syatem defined by
y(-) = Tix(-)1 , y(r) = 4x(t) + 2

is memoryless.



Finally, if the time variable t -- of the input and
output signals -- takes all values in an interval (finite
or nonfinite) then the system is said to be continuous-
time. If t takes only discrete values then the system

is called discrete-time.

PROBLEMS
1. Verify whether the following input-output transforma-
tions are: linear, nonlinear, time-invariant, time-

varying, causal, noncausal, or memoryless:

y(t) = tx(t) , 0 <t <5,
y(t) = J e"(+=%0x(q) 4o , —o <t < @
t 4
y(t) = x(t) + [ (t-1) x(1) dt , t >0
G
y(t)y = dx(t) _ [t 2 x(r) d1 t >0 ;
dt : :
y(t) = 4x{t)Z
y(t) = =x(t-5) , —o <t < ©
y(t) = [ +tox(c) do , - <t < o

—0
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