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Preface

The present volume is an outgrowth of a Conference on Mathematical Tables
held at Cambridge, Mass.; on September 15-16, 1954, under the auspices of the
National Science Foundation and the Massachusetts Institute of Technology. The
purpose of the meeting was to evaluate the need for mathematical tables in the light
of the availability of large scale computing machines. It was the consensus of
opinion that in spite of the increasing use of the new machines the basic need for
tables would continue to exist.

Numerical tables of mathematical functions are in continual demand by scien-
tists and engineers. A greater variety of functions and higher accuracy of tabula-
tion are now required as a result of scientific advances and, especially, of the in-
creasing use of automatic computers. In the latter connection, the tables serve
mainly for preliminary surveys of problems before programming for machine operation.
For those without easy access to machines, auch tables are, of course, indispensable.

Consequently, the Conference recognized that there was a pressing need for a
modernized version of the classical tables of functions of Jahnke-Emde. To imple-
ment the project, the National Science Foundation requested the National Bureau
of Standards to prepare such a volume and established an Ad Hoc Advisory Com-
mittee, with Professor Philip M. Morse of the Massachusetts Institute of Technology
as chairman, to advise the staff of the National Bureau of Standards during the
course of its preparation. In addition to the Chairman, the Committee consisted
of A. Erdélyi, M. C. Gray, N. Metropolis, J. B. Rosser, H. C. Thacher, Jr John
Todd, C. B. Tompkins, and J. W. Tukey. .

The primary aim has been to include a maximum of useful information Wthln

the limits of a moderately large volume, with particular attention to the needs of

scientists in all fields. An attempt has been made to cover the entire field of spectal .
functions. To carry out the goal set forth by the Ad Hoc Committee, it has been
necessary to supplement the tables by including the mathematical properties that
are important in computation work, as well as by providing numerical methods
which demonstrate the use and extension of the tables.

The Handbook was prepared under the direction of the late Milton Abramowitz,
and Irene A. Stegun. Its success has depended greatly upon the cooperation of
many mathematicians. Their efforts together with the cooperation of the Ad Hoc
Committee are greatly appreciated. The particular contributions of these and
other individuals are acknowledged at appropriate places in the text.- The sponsor-
ship of the National Science Foundation for the preparation of the material is
gratefully recognized.

It is hoped that this volume will not only meet the needs of all table users but
will in many cases acquaint its users with new functions.

ALLEN V. Asmiv, Director.

Washington, D.C.

61614




Foreword

This volume is the result of the cooperative effort of many persons and a number
of organizations. The National Bureau of Standards has long been turning out
mathematical tables and has had under consideration, for at least 10 years, the
production of & compendium like the present one. During a Conference on Tables,
called by the NBS Applied Mathematics Division on May 15, 1952, Dr. Abramo-
witz of that Division mentioned prehmma.ry plans for.such an undertaking, but
indicated the need for technical advice and financial support.

The Mathematics Division of the National Research Council has also had an
active interest in tables; since 1943 it has published the quarterly j0urnal “Mathe-
matical Tables and Axds to Computation” (MTAC), editorial supervision being
exercised by a Committee of the Division.

Subsequent to the NBS Conference on Tables in 1952 the attention of the
National Science Foundation was drawn to the desirability of financing activity in
table production. With its support a 2-day Conference on Tables was called at the
Massachusetts Institute of Technology on September 15-16, 1954, to diseuss the
needs for tables of various kinds. Twenty-eight-persons attended, representing
scientists and engineers using tables as well as table producers. This conference:
reached consensus on several conclusions and recommendations, which were seot
forth in the published Report of the Conference. There was general agreement,
for example, ‘‘that the advent of high-speed computing equipment changed the
task of table making but definitely did not remove the need for tables’’. It was
also agreed that ‘“‘an outstanding need is for & Handbook of Tables for the Occasional
Computer, with tables of usually encountered functions and a set of formulas and
tables for interpolation and other techniques useful to the occasional computer’.
The Report suggested that the NBS undertake the production of such a Handbook
and that the NSF contribute financial assistance. The Conference elected, from its
participants, the following Committee: P. M. Morse (Chairman), M. Abramowitz,
J. H. Curtiss, R. W. Hamming, D. H. Lehmer, C. B. Tompkins, J."'W. Tukey, to
help implement these and other recommendations.

The Bureau of Standards undertook to produce the recommended tables and the
National Science Foundation made funds available. ‘T6 provide technical guidance
to the Mathematics Division of the Bureau, which carried out the work, and to pro-
vide the NSF with independent judgments on grants for the work, the -Conference
Committee was reconstituted as the Committee on Revision of Mathematical
Tables of the Mathematics Division of the National Research Council. This, after
some changes of membership, became the Committee which is signing this Foreword.
The present volume is evidence that Conferences can sometimes reach conclusions
and that their recommendations sometimes get acted on.




FOREWORD

Active work wag started at the Bureau in 1956. The overall plan, the selection
of authors for the various chapters, and the enthusiasm required to begin the task
were contributions of Dr. Abramowitz. Since his untimely death, the effort has
continued under the general direction of Irene A. Stegun. The workers at the
Bureau and the members of the Committee have had many discussions about
content, style and layout. Though many details have had to be argued out as they
came up, the basic specifications of the volume have remained the same as were
outlined by the Massachusetts Institute of Technology Conference of 1954.

The Committee wishes here to register its commendation of the magnitude and
quality of the task carried out by the staff of the NBS Computing Section and their
expert collaborators in planning, collecting and editing these Tables, and its appre-
ciation of the willingness with which its various suggestions were incorporated into
the plans. We hope this resulting volume will be judged by its users to be a worthy
memorial to the vision and industry of its chief architect, Milton Abramowitaz.
We regret he'did not live to see its publication.

P. M. Morsg, Chairman.
A. Erpfry1
M. C. Gray
N. C. MeTroroL1s
J. B. Rosser
H. €. THACHER, Jr.
JouN Topp
C. B. ToMPKINS
J. W. Tugey.
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Handbook of Mathematical Funections

with

Formulas, Graphs, and Mathematical Tables

Edited by Milton Abramowitz and Irene A. Stegun

1. Introduction

The present Handbook has been designed to
Erovide scientific investigators with a compre-

ensive and self-contained summary of the mathe-
matical functions that arise in physical and engi-
neering problems. The well-known Tables of
Functions by E. Jahnke and F. Emde has been
invaluable to workers in these fields in its many
editions! during the past half-century. The
present volume extends the work of these authors
by giving  more extensive and more accurate
numerical tables, and Ly giving larger collections
of mathematical properties of the tabulated
functions. The number of functions covered has
also been increased. .

The classification of functions and organization
of the chapters in this Handbook is similar to
that of An Index of Mathematical Tables by
A. Fletcher, J. C. P. Miller, and L. Rosenhead.?
In general, the chapters contain numerical tables,
graphs, polynomial or rational approximations
for automatic computers, and statements of the
principal mathematical properties of the tabu-
lated functions, particularly those of computa-

tional importance. Many numerical examples
are given to illustrate the use of the tables and
also the computation of function values which lie
outside their range. At the end of the text in
each chapter there is a short bibliography giving
books and papers in which proeis of the mathe-
matical properties stated in the chapter may be
found. Also listed in the bibliographies are the
more important numerical tables. Comprehen-
sive lists of tables are given in the Index men-
tioned above, and current infermation on new
tables is to be found in the National Research
Council quarterly Matkematics of Computation
(formerly Mathematical Tables and Other Aids
to Computation).

The mathematical notations used in this Hand-
 book are those commonly adopted in standard
texts, particularly Higher Transcendental Func-
tions, Volumes 1-3, by A. Erdélyi, W. Magnus,
F. Oberhettinger and F. G. Tricomi (McGraw-
Hill, 1953-55). Some alternative notations have
also been listed. The introduction of new symbols
has been kept to a minimum, and an effort has
been made to avoid the use of conflicting notation.

2. “Accuracy of the Tables

The number of significant figures given in each
table has depended to some extent on the number
available in existing tabulations.
no attempt to make it uniform throughout the
Handbook, which would have been a costly and
laborious undertaking. In most tables at least
five significamt figures have been provided, and
the tabular intervals have generally been chosen
to ensure that linear interpolation will yield four-
or fivefigzure accuracy, which suffices in most
physical applicationis. Users requiring higher

1 The most recent, the sixth, with F. Loesch added as co-author, was

published in 1960 by McGraw-Hill, U.8.A., and Teubner, Germany.
1 The second edition, with L. J. Comrie added as co-author, was published

in two. volumes in 1062 by Addisan-Wesl:y, U.8,A = and Scientific Com-
puting Service Lt reat Britain.

There has been .

precision in their interpolates may obtain them
by use of higher-order interpolation procedures,
described below.

In certain tables many-figured function values
are given at irregular intervals in the argument.
An exampleis provided by Table 9.4. The pur-
pose of these tables is to furnish ‘“key values” for
the checking of programs for automatic computers;
no question of interpolation arises.

The maximum end-figure error, or “tolerance’”
in the tables in this Handbook is %, of 1 unit
everywhere in the case of the elementary func-
tions, and 1 unit in the case of the higher functions
except in a few cases where it has been permitted
to rise to 2 units.

X
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3. Auxiliary Funections and Arguments

One of the objects of this Handbook is to pro-
vide tables or computing methods which enable
the user to evaluate the tabulated functions over
complele ranges of real values of their parameters.
In order to achieve this object, frequent use has
been made of auxiliary functions to remove the
infinite part of the original functions at their
singularities, and auxiliary arguments to cope with
infinite ranges. An example will make the pro-
cedure clear.

“The exponentisl -integral of positive argument
is given by

Biw)= [~ Zdu
’ 3 3
e

e 11 2! 3!
~;[1+;+5+§+ - -](I""“’)

The logarithmic singularity precludes direct inter-
polation near z=0. The functions Ei(z) —Iln
and «7'[Ei)—In z—v], however, are well-
behaved and readily interpolable in this region.
Either will do as an auxiliary function; the latter
was in fact selected as it yields slightly higher
accuracy when Ei(z) is recovered. ’Fhe function
z!'|Ei(z) —In z—+v] has been tabulated to nine
decimals for the range 0<z<4. For 4<z<2,
Ei(z) is sufficiently well-behaved to admit direct
tabulation, but for larger values of z, its expo-
pential character predominates. A smoother and
more readily interpolable function for Jarge z is
z¢~*Ei(z); this has been tabulated for 2 <z <10.
Finally, the range 10 <z <= is covered by use of
the inverse argument z~'. Twenty-one entries of
ze~*Ei(z), corresponding to z™'=.1(—.005)0, suf-
fice to produce an interpolable table. :

4. Interpolation

The tables in this Handbook are not provided
with differences or other aids to interpolation, be-
cause it was felt that the space they require could
be better employed by the tabulation of additional
functions. Admittedly aids could have been given
without consuming extra space by increasing the
intervals of tabulation, but this would have con-
flicted with the requirement that linear interpola-
tion is accurate to four or five figures.

For applications in which linear interpolation
is insufficiently accurate it is "intended that
Lagrange’s formula or Aitken’s method of itera-
tive linear interpolation® be used. To help the
-user, there is a statement at, the foot of most tables
of the maximum error in a linear interpolate,
and the number of function values needed in
Lagrange’s formula or Aitken’s method to inter-
polate to full tabular accuracy. :

As an example, consider the following extract
from Table 5.1.

z ze*Ei(x) T ze* By (x)
7.5 . 80268 7854 8.0 . 89823 7113
7.6 . 89384 6312 81 . 89927 7888
7.7 . 89497 9666 8.2 . 90029 7306
7.8 . 80608 8737 8.3 . 90129 60°3
7.9 . 89717 4302 8. 4 . 90227 4695

J(—6)3

5
The nunbers in the square brackets mean that
the maximum error in a linear interpolate is
3% 1079, and that to interpolate to the full tabular

accuracy five points must be used in Lagrange’s
~ and Aitken’s methods. ‘

LA, C. Aitken, On interpolation by iteration of proportional parts, with-
-1zt the use of differences, Proc. Edinburgh Math. 8oc. 3, 56-76 (1932).

Let us suppose that we wish to compute the
value of xe’%;(z) for x=7.9527 from this table.
We describe in turn the application of the methods
of linear interpolation, Lagrange and Aitken, and
of alternative methods based on differences and
Taylor’s series. )

1) Linear interpolation. The formula for this
process is given by

fr=0—p)fo+ph

where f,, f, are consecutive tabular values of the
function, corresponding to arguments zo, i, re-
spectively; 2 is the given fraction of the argument
interval :
Pp=(2—30)/ (1~ %0)
and f, the required interpolate. In the present
instance, we have
fo=.89717 4302 £1=.89823 7113 p=527
The most convenient way to evaluate the formula
on a desk calculating machine is to set fo and f;
in turn on the keyboard, and carry out the multi-
plications by 1—p and p cumulatively; a partial
check is then provided by the multiplier dia
reading unity. e obtain .

foar=(1—.527)(.89717 4302)+.527(.89823 7113)
= 89773 4403.

Since it is known that there is a possible error
of 3% 10-*in the linear formula, we round off this
result to .89773. The maximum possible error in
this answer is composed of the error committed
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by the last rounding, that is, .4403X107°% plus

310~ and so certainly cannot exceed .8X107%
(2) Lagrange’s formula. In this example, the

relevant formula is the 5-point one, given by

f=A_:(p)f-2a+ A1 (@) -1+ A(@)fo+ APV
+4:(p)2

Tables of the coefficients A:(p) are given in chapter
25 for the range p=0(.01)1. e evaluate the
formula for p==.52, .53 and .54 in turn. Again,
in each evaluation we accumulate the 4,(p) in the
multiplier register since their sum is unity. We
now have the following subtable. :

The numbers in the third and fourth columns are
the first and second differences of the wvalues of
z¢*E\(x) (see below); the smallness of the second
difference provides a check on the three interpola-
tions. The required value is now obtained by
linear interpolation:

fo=-3(.89772 9757)+.7(.89774 0379)
=.89773 7192.

In cases where the correct order of the Lagrange
polynomial is not known, one of the preliminar,

z ze*Ey () mnterpolations may have to be performed wit
7.952  .89772 9757 polynomials of two or more different orders as a
10622 check on their adequacy.
7.953 89774 0379 —2 . » . . . .
10620 _(3) Aitken’s method of iterative linear interpola-
7.954  .89775 0999 tion. The scheme for carrying out this process
in the present example is as follows:
n z.  Yya=ze*Ei(z) Yo n Yo.1.m Yo1,2.n ¥o,1,2.3,n Ta—2
0 80 .89823 7113 . 0473
1 7.9 .89717 4302 . 89773 44034 —. 05827
2 81 .89927 7888 .89774 48264 . 89773 71499 . 1473
3 7.8 .89608 8737 2 90220 2394 . 89773 71938 —. 1627
4 82 .90029 7306 4 98773 1216 16 89773 71930 . 2473
5 7.7 .89497 9666 2 35221 2706 43 a0 . 2527
Here Zo . Jo o
1/2
yo.u=; v T % @ A &
Zpa—Tol¥n  Ta—Z Ofan 81
- n  fi & 3y
- 1 Jyoa zl—zl ¥sn &fsn
Outom Zn—Z1{Y0.n Ina—2Z T3 f' 52f3
&1
- 1 Yo, - -, m—1l.m Tm—T T4 Ji
Yo.1.. . ..;m=1l.m.n To—Zultos, - - - mel,h Ta—T Here

If the quantities z,—z and z,—z are used as
multipliers when forming the cross-product on a
desk machine, their accumulation (z,—z) — (Zm—%)
in the multipiier register is the divisor to be used
at that stage. An extra decimal place is usually
carried in the intermediate interpolates to safe-
guard against accumulation of rounding errors.

The order in which the tabular values are used
is immaterial to some extent, but to achieve ‘the
maximum rate of convergence and at the same
time minimize accumulation of rounding errors,
we begin, as in this example, with the tabular
argument nearest to the given argument, then
take the nearest of the remaining tabular argu-
ments, and so on. :

The number of tabular values required to
achieve a given precision emerges naturally in
the course of the iterations. Thus in the present
example six values were used, even though it was
known in advance that five would suffice. The
extra row confirms the convergence and provides
a valuable check. :

(4) Difference formulas. We use the central
difference notatiop {chapter 25),

" Sfip=fi—fo, fan=fi—Sfn . - -,

8fy=8fss— 8f1p=Ffa— 21 +Jo
3¥ag= 83, — 81 =Ff3—3fa+3fi—fo

' ' 8y ="n— Bfspn=Fi— 41+ 6f2— 41+ fo
and so on.

In the present example the relevant part of the
difference table is as follows, the differences being
written in units of the last decimal place of the
function, as is customary. The smallness of the
high diffsrences provides a check on the function
values

z ze*rE,(x) ' 3*f 34
7.9 . 89717 4302 —2 2754 —34
8.0 .89823 7113 —2 2036 -39

Applying; for example, Everett’s interpolation
formula

Fo=Q—=D)fo+ Ex(p) 8o+ Ei(p)8tot+ . . . -
+pfi+ Fo(p)o¥fi+ Fu(p)tfit . . -

‘and taking the numerical values of the interpola-
tion coefficients Ey(p), Ei(p), Fi(p) and Fi(p)
from Table 25.1, we find that
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10% 52 ==.473(89717 4302)+.061196(2 2754) — .012(34)
+.527(89823 7113) +.063439(2 2036) —.012(39)
=89773 7193.

We may notice in passing that Everett’s
formula shows that the error in a linear interpolate
is approximately

Ey(p)8fo+ Fa(p) 81 =~ H Ea(p) + Faip) |80+ 841

Since the maximum value of |E;(p) + F:»(p)| in the
range 0< p<{1 18 %, the maximum error in a linear
interpolate is approximately

15 1#i0-+ 811, that is, S| fa—fi—fort Sl

(5) Taylor’s series. In cases where the succes-
sive derivatives of the tabulated function can be
computed fairly easily, Taylor’s expansion

f(:c) ={1(xy) +{x —xy) f—,l(_?)’)"f' (x‘—xo)z.’%(;t—o‘)

+(2:—‘IQ)S'L,'3(TI'Q)‘+ e

5. Inverse

With linear interpolation there is no difference
in principle between direct and inverse interpola-
tion. In cases where the linear formula provides
an insufficiently accurate answer, two methods are
available. We may interpolate directly, for
example, by Lagrange’s formula to prepare a new
table at a fine interval in the neighborhood of the
approximate value, and then apply accurate
inverse linear interpolation te the subtabulated
values.  Alternatively, we may use Aitken’s
method or even possibly the Taylor’s series
method, with the roles of function and argument
interehanged.

It is important to realize that the accuracy of
an inverse mnterpolate may be very different from
that of a direct interpolate. This is particularly
true in regions where the function is slowly
varying, for example, near a maximum or min-
mum. The maximum precision attainable in an
inverse interpolate can be estimated with the aid of
the formula

sa~af)d

in which Af is the maximum possible error in the
funetion values.

Example. Given ze’E,(x)=.9, find z from the
table on page X.
() Inverse linear interpolation. The formula

or pis
p={fo—f) [(h—Ffo)-
In the present example, we have

_ -9—.89927 7888 __ 72 2112
P=" 90029 7306—.89927 7888 101 0418

==.708357.

can be used. We first compute as many of the
derivatives f™ (%) as are significant, and then
evaluate the series for the given value of z.
An advisable check on the computed values of the
derivatives is to reproduce the adjacent tabular
values by evaluating the series for x=xz_, and z,.

In the present example; wg have

f(x) =ze*E\{(z)
"(Z) =14z f(x)—1
"(z) = (1-+a~N)f (x) — ™ (x)
Py =1-tz=)f" (@) — 227 (2) + 22~ % (x).

With z,=7.9 and 2—2,=.0527 our computations
are as follows; an extra decimal has been retained
in the values of the terms in the series to safeguard
against accumulation of rounding errors.

k T ®(zo) /! (& —z0) tf 0 () [ !
0 89717 4302 89717 4302
1 01074 0659 .00056 6033 3
2 —.00113 7621  —.00000 3159 5
3 00012 1987 .00000 0017 9
89773 7194
Interpolation

The desired z is therefore
xe==g0-+p(r,—x¢) == 8.1+ .708357(.1) =8.17083 57

To estimate the possible error in this answer,
we recall that the maximum error of direct linear
interpolation in ‘this table is Af=3X107% An
approximate value for df/dz is the ratio of the
first difference to the argument interval (chapter
25), in this ease .010. Hence the maximum error
in 2 is approximately 3 X107%/(.010), that is, .0003.

(ii) Subtabulation method. To improve the
approximate value of z just obtained, we inter-
polate directly for p=.70, .71 and .72 with the aid
of Lagrange’s 5-point formula,

T ze*E, (x) 5 &2
8. 170 . 89999 3683
1 0151
8. 171 . 90000 3834 -2
1 0149
8.172 . 90001 3983

Inverse linear interpolation in the new table
gives

_.9—.89999 3683 _

~.00001 0151 =6223

Hence £z=8.17062 23.

~ An estimate of the maximum error in this result

18
df 1X10~°

——a = =7
Aj/dx 010 1X10

(i) Aitken’s method. Thisis carried outin the
same manpner as in direct interpolation.
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Ya=2ze*E(z)

Zo,1,2.3,n

n 2 Zo,n Zo,1,n Z0,1,2.n Yn—Y

0 .. 90029 7306 8 2 . 00029 7306
1 .89927 7888 8.1 8 17083 5712 —. 00072 2112
2 .90129 6033 8.3 8.17023 1505 8 17061 4521 . 00129 6033
3 .89823 7113 8 0 8 17113 8043 2 5948 8. 17062 2244 —. 00176 2887
4 .90227 4695 8 4 8 16992 9437 1 7335 415 8.17062 2318 . 00227 4695
5 -.80717 4302 7.9 8 17144 0382 2 8142 231 265 —, 00282 5648

The estimate of the maximum error in this
result is the same as in the subtabulation method.
An indication of the error is also provided by the

discrepancy in the highest interpclates, in this
case To1.2.3.4, 80d To1.23.5.

6. Bivariate Interpolation

Bivariate interpolation is generally most simply
performed as a sequence of univariate interpola-
tions. We carry out the interpolation in one
direction, by one of the methods already described,
for several tabular values of the second argument
in the neighborhood of its given value. The

interpolates are differenced as a check, and |

interpolation is then carried out in the second
direction. :
An alternative procedure in the case of functions
of a complex variable is to use the Taylor’s series
expansion, provided that successive derivatives

of the function can be computed without much
difficulty.

7. Generation of Functions from Recurrence Relations

Many of the special mathematical functions
" which depend on-a parameter, called their index,
order or degree, satisfy a linear difference equa-
tion (or recurrence relation) with respect to this
parameter. Examples are furnished by the Le-
gendre function P,(z), the Bessel function J,(z)
and the exponential integral E,(z), for which we
have the respective recurrence relations

(n+ l)P..+l—-(2n+ 1)3Pn+ﬂPn—l=0
Jn+1_2?n Ju+Jn—l=0
nE. .\ +zE =e".

Particularly for automatic work, recurrence re-

lations provide an important and powerful com-

puting tool. If the values of P,(z) or J,(z) are

known for two consecutive values of n, or E,(z)

is known for one value of n, then the function may
be computed for other values of n by successive
applications of the relation. Since generation is
carried out perforce with rounded values, it is
vital to know how errors may be propagated in
the recurrence process. If the errors do not grow
relative to the size of the wanted function, the
process is said to be stabte. If, however, the
relative errors grow and will eventually over-
whelm the wanted function, the process is unstable.

It is important to realize that stability may
depend on (i) the particular solution of the differ-
ence equation being computed; (it) the values of
z or other parameters in the difference equation;

(1ii) the direction in which the recurrence is being
applied. Examples are as follows.

Sta.bility——increasiﬁg n
Py(z), P3(z)

Qn(z), Q2(z) (<)
Ya(z), Kalz)

Jonesg(T), Tony5(z)
En(z) (n<2)
Stability—decreasing n
Py(x), Pp(z) (2<1)
Qa(x), Qm(2)

(@), In(@)

Juss@), In®)

Ea(z) (n>1)

Fua(n, p) (Coulomb wave function)

Illustrations of the generation of.functions from
their recurrence relations are given in the pertinent
chapters.. It is also shown that even in cases
where the recurrence process is unstable, it may
still be used when the starting values are known
to sufficient accuracy.

Mention must also be made here of a refinement,
due to J. C. P, Miller, which enables a recurrence
process which is stable for decrcasing n to bo
applied without any knowledge of sturting values
for large m. Miller’s algorithm, which is well-
suited to automatic work, is described in 19.28,
Example 1.
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1. Mathematical Constants.

Davip S. LagpMan!
Contents

Table 1.1. Mathematical Constants .
vn, n prime <100, 20S. . .
Some roots of 2, 3, 5, 10, 109, 1000, ¢, 20S .
=" n=1(1)10, 258 . . . . . . . . . ...
e*™ n=1(1)10, 208 . . .. . . .. ... . ... .. -
e, e*", 208 . . .. Lo
In n, log,, 7, n=2(1)10, primes <100, 26, 25S
In =, Inv2m, logy 7, log ¢, 25S .
21010, n=1(1)9, 258 . . . .. . . . ..
nw,n=1(1)9, 258 ., . . .. . . e
a a=1(1)10, 255 . . . . .
Fractions of x, powers ahd roots involving =, 25S . .
iradiap in degrees, 26S . . . . . . . .. . ...
1°, 17, 17 in-radians, 24D. . . . .. ...
vwhy 24D . . . .. ... ...
T'(), UT@), 15D . . .
I'(z), 1/T(@),In T (), z=%,1,4, 4, 4,8, 8,7 15D. . . ..

! Natjonal Bureau of Standards.

~
®
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MATHEMATICAL CONSTANTS

TABLE 1. 1. MATHEMATICAL CONSTANTS

n{prime) Va
2 1. 4142 13562 37309 50488 1012 3.1622 77660 16837 93320
3 1. 7320 50807 56887 72935 1003 2. 1544 34690 03188 37219
5 2.2360 67977 49978  U6964 1014 1.7782 79410 03892 28012
7 2.6457 51311 06459 05905 101/ 1. 5848 03192 46111 34853
11 3.3166 24700 35339 98491 10014 4. 6415 88833 61277 88924 *
13 3.6055 51275 46398 92031 10015 2. 5118 86431 50958 01112
17 4. 1231 05625 61766 05498 100014 56234 13251 90349 08040
19 4. 3588 98943 54067 35522 100015 3.9810 71705 53497 25077 *
23 4. 7958 31523 31271 95416 2173 1. 2599 21049 89487 31648
29 5.3351 64807 13450 40313 3173 1. 4422 49570 30740 83823
31 5. 5677 64362 83002 19221 pall 1. 1892 07115 00272 10667
37 6. 0827 62530 29821 96890 . 314 1.3160 74012 95249 24608 *
11 6. 4031 24237 43234 86865 2-12 (— 1) 7.0710 67811 86547 52440
43 6. 5574 38524 30200 (6523 3-12 (— 1) 5.7735 02601 89625 76451
47 6. 8556 54600 40104 41249 5717 (-- 1) 4.4721 35954 49057 93928
53 7.2801 (Y889 28051 82711
59 7. 6811 45747 86860 81758
61 7. 8102 49675 90665 43941 erf? 4. 8104 77380 96535 16555
67 8. 1853 52771 87244 99700 et/ 2.1932 80050 73801 54566
71 8 4261 49773 17635 86306 e=*2  (-- 1) 2.0787 95763 50761 90855
73 8. 5440 03745 31753 11679 e~TA  (— 1) 4.5593 81277 65996 23677
79 8 8881 94417 31558 88501 el . 1.6487 21270 70012 81468
83 9.1104 33579 14429 88819 12 (=71) 6, 0653 06597 12633 42360
89 9. 4339 81132 05660 38113 el 1.3956 12425 08608 Y5286
a7 9. 8488 57801 79610 47217 eiA  (— 1) 7.1653 13105 73789 25043
n e’l n e-ﬂ
1 2. 7182 B1828 45004 52353 60287 1 (- 1) & 6787 94411 71442 32159 55238 -
2 ) 7.3800 56098 93065 02272 30427 2 {(— 1) 1.3533 52832 36612 69189 39995
3 { 1) 2.0085 53692 31876 67740 92853 3 (— 2) 4.9787 06836 78639 42979 34242
4 ( 1) 5 4598 15003 . 31442 39078 11026 4 (— 2) 18315 63888 87341 80293 71802
5 ( 2) 1.4841 31591 02576 60342 11156 5 (— 3) 6.7379 46999 08546 70966 36048
6 ( 2) 40342 87934 92735 12260 83872 6 (— 3) 2.4787 52176 66635 84230 45167
7 { 3) 1.0966 33158 42845 85992 63720 7 (— 4) 9.1188 19655 54516 20800 31361
8 { 3) 29809 57987 04172 82747 43592 8 (— 4) 3.3546 26279 02511 83882 13891
9 ( 3) 81030 83927 57538 40077 09997 ] (— 4) 1.2340 98040 86679 54949 76367
10 ( 4) 2 2026 46579 48087 16516 95790 10 (— 5) 4.5309 92976 24848 51535 &59152
n enr n emnt
1 ( 1) 23140 69263 27792 69006 1 (— 2) 4.3213 91826 37722 49774
2 ( 2) 53549 16555 24764 73650 2 (— 3) 1.8674 42731 70798 88144
3 (.4) 1.2391 64780 79166 97482 3 (~ 5) 80699 51757 03045 99239
4 { '5) 2.8675 13131 36653 _ 29975 4 (— 6) 3.4873 42356 20899 54918
5 ( 6) 6.6356 23999 34113 42333 5 {— 7) 1.5070 17275 39006 46107
6 ( 8 1 5355 20353 05446 69392 6 (— 9) 6.512¢ 12136 07990 07282
7 ( 9) 3.5533 21280 84704 43597 7 (—10) 2. 8142 68457 48555 27211
8 (10) 8 2226 31558 55049 95275 8 (—11) 1. 2161 55670 94093 08397
9 (12) 1.9027 73895 29216 12917 9 (—13) 5.2554 85176 00844 85552 -
10 (13) 4.4031 50586 06320 29011 10 (—14) 2.2711 01068 32409 38387
e ( 1) 1.5154 26224 147962 64190 e (— 2) 6 5988 03584 531256 37077
e 1. 7810 72417 99019 79852 e {(— 1) 5.6145 04835 66885 16982
n Inn n logw n
2 0.6031 47180 55094 53094 172321 2 (—1) 3.0102 99956 63081 10521 37388
3 1. 0986 12288 66810 96913 952452 3 (—1) 4. 7712 12547 10662 43720 50279
4 1.3862 04361 11980 06188 344642 4 (—1) 6.0205 99913 27062 39042 74778
5 1. 6004 37912 43410 03746 007593 5 (—1) 6.9807 00043 36018 80478 62611
6 1.7917 59469 22805 50008 124774 6 (~1) 7.7815 12503 83643 63250 87668
7 1.9459 10149 05531 33051 053527 7 (—1) 8. 4509 80400 14256 83071 22163
8 2.0794 41541 B7983 59282 516964 8 {—1) 9.0308 99860 01943 585664 12167
9 2.1972 24577 33621 03827 904905 9 (~1) ©.5424 25094 . 39324 87459 00558
10 2.3025 85092 09404 56840 179915 10 1. 0000 00000 00000 00000 00000
11 2.3978 95272 79837 05440 619436 11 1. 0413 92685 15822 50407 50200
13 2.5649 49357 46153 67360 534874 13 1. 1139 43352 30683 67692 06505
17 2, 8332 13344 05621 60802 495346 17 1. 2304 48921 37827 39285 40170
19 2.0444 38379 16644 04600 090274 19 1. 2787 53600 95282 80615 36333
23 3. 1354 94215 92011 096008 067528 23 1.3617 27836 01759 28788 67777
29 3.3672 95329 98647 40271 832720 29 1. 4623 97997 89805 60873 32847
31 3.4330 87204 48514 62450 291643 31 1. 4913 61693 83427 26796 66704
37 3.6109 17912 64422 44443 680957 37 1. 5682 01724 06699 49968 08451
41 3.7135 72066 70430 78038 667634 4l 1. 6127 83856 71973 54945 09412
43 3.7612 00115 69356 24234 728425 43 1. 6334 68455 57958 65264 05088

*See page il




MATHEMATICAL CONSTANTS 3
TABLE 1.1. MATHEMATICAL CONSTANTS—Continued

n Inn n logw n )
47 3.8501 47601 71005 85868 209507 47 1. 6720 97857 93571 T4644 14219
53 3.0702 91913 55212 18341 444691 53 1. 7242 75869 60078 90456 32992
59 4.0775 37443 90571 04506 160504 59 1. 7708 52011 .64214 41902 60656
61 4.1108 73864 17331 12487 513891 61 1. 7853 20835 01076 70338 85749
67 4. 2046 92619 39096 60596 700720 67 1. 8260 74802 70082 64341 49132
71 4.2626 79877 04131 54213 294545 71 1. 8512 58348 71907 52860 92829
73 4 2004 59441 14839 11290 921089 73 1. 8633 22860 12045 59010 74387
79 4. 3694 47852 46702 14941 729455 79 1. 8676 27091 29044 14279 94821
83 4. 4188 40607 79659 79234 754722 83 1.9190 78092 37607 39038 32760
89 4. 4886 36369 73213 98383 178155 89 1. 9493 90006 64491 27847 23543
97 4. 5747 10978 50338 28221 167216 97 1. 9867 71734 26624 48517 84362
lnx 1. 1447 29885 849140 01741 43427 loggor (—1) 4.9714 98726 94133 85435 12683

nv2r (—1) 9.1893 85332 04672 74178 03296 loge (—1) 4 3420 44819 03251 82765 11289
n n ln 10 n nwr
1 2.3025 85092 99404 56840 17991 1 3.1415 92653 58979 32384 62643
2 4, 6051 TOI85 08809 13680 35983 2 6. 2831 85307 17958 64759 25287
3 6. 9077 55278 98213 70520 53974 3 9, 4247 77960 76937 97153 87930
4 9.2103 40371 97618 27360 71966 4 (1) 1.2566 37061 43591 72953 85057
5 ( 1) 1.1512 92546 40702 28420 08996 5 (1) 1.5707 96326 79489 66192 31322
6 ( 1) 1.3815 51055 79642 74104 10795 6 ( 1) 1.8849 55592 15387 59430 77586
7 ( 1) 1.8118 09565 00583 19788 12594 7 ( 1) 2.1991 14857 51285 52669 23850
8 ( 1) 1.8420 68074 30523 65472 14303 8 (- 1) 2.5132 74122 87183 45907 70115
g9 (1) 2.0723 26583 69464 11156 16192 9 ( 1) 2.8274 33388 23081 39146 16379
n b n "
1 3. 1415 92653 58079 32384 62643 i (—1) 3. 1830 98861 83790 67153 77675
2 9. 8696 04401 08935 86188 34491 2 (—1) 1.0132 11836 42337 77144 38795
3 ( 1) 3.1006 27668 02998 20175 47632 3 {—2) 3.2251 53443 31994 89184 42205
4 ( 1) 9.7409 09103 40024 37236 44033 4 {—-2) 1. 0265 98225 46843 35189 15278
5 ( 2) 3.0601 96847 85281 45326 27413 5 (—3) 3.2677 63643 05338 54726 28250
6 ( 2) 9.6138 91935 75304 43703 02194 6 (—3) 1.0401 61473 20585 22960 89838
7 { 3) 3.0202 93227 77679 20675 14206 7 {—4) 3.3109 36801 77566 76432 59528
8 ( 3) 9 4885 31016 07057 40071 28576 8 (—4) 1.0539 03916 53493 66633 17287
9 ( 4) 2.9809 09933 34462 11666 50940 9 (—5) 3.3546 80357 20886 91287 39854
10 ( 4) 9.3648 04747 60830 20973 71669 10 (+5) 1. 0678 27922 68615 33662 04078

x/2 1. 5707, 96326 79489 66192 31322 3x/2 4.7123 88080 38468 98576 93965

x/3 1. 0471 97551 19659 77461 54214 4x/3 4, 1887 90204 78639 00846 16858

/4 (—1) 7.8539 81833 97448 30961 ‘56608 r(2)1 4. 4428 82038 15836 62470 15881

x5 1. 7724 53850 90551 60272 98167 1A (—1) 5 6418 05835 47756 28694 80795

xlA 1. 4645 91887 56152, 32630 20143 xoiA (—1) 6.8278 40632 55205 68146 70208

xif 1. 3313 35363 ' 80038 97127 97535 ol (—1) 7.5112 55444 64942 48285 87030

xi1 2. 1450 20397 11102 56000 77444 s {—1) 4.6619 40770 35411 61438 19885

»h 2. 3507 80492 41460 68875 78474 I (—1) 42377 72081 23757 59679 10077

7 5. 5683 27996 83170 78452 84818 31 {(—1) 1.7958 71221 25168 56168 90820

e 1) 22459 15771 B3610 45473 42715 L (—2) 4.4525 26726 69229 08151 35273

(2w)10 2. 5066 28274 83100 05024 15765 (2x)-17  (—1) 3.0804 22804 01432 67793 99461

(w/2)1 1. 2533 14137 31550 02512 (7883 (2/m)!?  (—1) 7.9788 45608 02885 35587 98921

»(2)-17 2. 2214 41469 07918 31235 07940 Y. Vi (—1) 4.5015 81580 78553 03477 75996

1r 57,2957 79513 08232 08767 98155° v 0.0002 90888 20868 57215 96154~

1° 0. 0174 53202 51994 32057 69237r 1 0.0000 04848 13681 10953 50936r

¥ 0, 5772 15664 90153 28606 06512 In ¥ —0. 5405 30312 08164 48223 37662

T(1/2) 1. 7724 53850 905518 1/r(1/2g 0. 5641 80383 547756

r(1/3) 2, 6789 38534 707748 1/1'(1/3 0.3732 82173 907395

T(2/3) 1. 3541 17939 426400 1/1(2/3) 0.7384 88111 621648

T(1/4) 3. 6256 09908 221608 1/1‘(1/43 0.2758 15862 830209

T(3/4) 1. 2254 16702 465178 1/r(3/4 0.8160 48939 098263

T{4/3) 0. 8920 79511 560249 1/r(4/3§ 1.1198 46521 722186

' (5/3) 0. 0027 45202 950934 1/T(5/3 1.1077 32167 432472

1'(5/4) 0. 9064 02477 055477 1/r(5/4) 1.1032 62651 320837

T(7/4) 0. 9190 62526 848883 1/r(7/4) 1. 0880 65252 131017

In T'(1/3) 0. 9854 20646 927767 In T'(4/3) —0.1131 01641 740343

In T'(2/3) 0. 3031 50275 147523 in I'(5/3) —0.1023 14832 960640

In T(1/4) 1. 2880 22524 698077 In T'(5/4) -0.0082 71836 421813

In T(3/4) 0.2032 80951 431296 In T'(7/4) —0.0844 01121 020486

789-636 O-65-2

*See page 11




