Artificial Intelligence Expert Systems Computer Vision and Natural Language Processing

by

William B. Gevarter

Artificial Intelligence Expert Systems Computer Vision and Natural Language Processing

by

William B. Gevarter

Office of Aeronautics and Space Technology National Aeronautics and Space Administration Washington, DC Copyright © 1984 to Noyes Publications
Library of Congress Catalog Card Number: 84-6014
ISBN 0-8155-0994-4
Printed in the United States

Published in the United States of America by Noyes Publications Mill Road, Park Ridge, New Jersey 07656

1098765432

Library of Congress Cataloging in Publication Data

Gevarter, William B.
Artificial intelligence, expert systems, computer vision, and natural language processing.

Includes bibliographies and index.
1. Artificial intelligence, I, Title.
Q335.G48 1984 001.53'5 84-6014
ISBN 0-8155-0994-4

Foreword

An overview of artificial intelligence (AI), its core ingredients, and its applications is presented in this volume. AI is a field with over a quarter century of history; however, it wasn't until the 1980s that AI received economic and popular acclaim and went through the transition from a primary research area to potential commercial applications. The full impact of AI's transition has yet to be felt. Recently, AI was made the basic thrust of Japan's Fifth Generation computer research effort. Success in this venture could project the Japanese into a dominant position in information sciences in the 1990s. Similar importance has been placed on AI by the U.S., Great Britain, and France.

The real payoff for AI will be in applications. Intelligent computer programs are now emerging from the laboratory into practical applications. This book presents overviews of key application areas—expert systems, computer vision, natural language processing, speech interfaces, and problem solving and planning. Basic approaches to these systems, the state of the art, existing systems, participants, and future trends are detailed. The book should be useful to engineering and research managers, potential users and others seeking a basic understanding of the rapidly evolving area of artificial intelligence and its applications.

The information in the book is from:

An Overview of Artificial Intelligence and Robotics. Volume I—Artificial Intelligence, Part A—The Core Ingredients, by William B. Gevarter, Office of Aeronautics and Space Technology, National Aeronautics and Space Administration, June 1983.

An Overview of Artificial Intelligence and Robotics. Volume I—Artificial Intelligence, Part B—Applications, by William B. Gevarter, Office of Aeronautics and Space Technology, National Aeronautics and Space Administration, October 1983.

An Overview of Artificial Intelligence and Robotics. Volume I—Artificial Intelligence, Part C—Basic Al Topics, by William B. Gevarter, Office of Aeronautics and Space Technology, National Aeronautics and Space Administration, October 1983.

The table of contents is organized in such a way as to serve as a subject index and provides easy access to the information contained in the book.

Advanced composition and production methods developed by Noyes Publications are employed to bring this durably bound book to you in a minimum of time. Special techniques are used to close the gap between "manuscript" and "completed book." In order to keep the price of the book to a reasonable level, it has been partially reproduced by photo-offset directly from the original reports and the cost saving passed on to the reader. Due to this method of publishing, certain portions of the book may be less legible than desired.

NOTICE

The materials in this book were prepared as accounts of work sponsored by the National Aeronautics and Space Administration and the National Bureau of Standards. Publication does not signify that the contents necessarily reflect the views and policies of the contracting agency or the publisher.

It is not the intent of NASA or the National Bureau of Standards or the publisher to recommend or endorse any of the manufacturers or organizations named in this report, but simply to attempt to provide an overview of the AI field. However, in a diverse and rapidly changing field such as AI, important activities, organizations and products may not have been mentioned. Lack of such mention does not in any way imply that they are not also worthwhile. The author would appreciate having any such omissions or oversights called to his attention so that they can be considered for future reports.

Contents and Subject Index

PART A ARTIFICIAL INTELLIGENCE— THE CORE INGREDIENTS

١.	ARTIFICIAL INTELLIGENCE-WHAT IT IS	,3
	Definition	.3
	The Basic Elements of Al	
	Heuristic Search	.4
	Knowledge Representation	
	Common Sense Reasoning and Logic	.5
	Al Languages and Tools	.5
	Principal Al Application Areas	.5
	Natural Language Processing (NLP)	.5
	Computer Vision	.5
	Expert Systems	.5
	Problem Solving and Planning	.5
	Is Al Difficult?	.6
	References	.7
11.	THE RISE, FALL AND REBIRTH OF AI	.8
	The First 15 Years	
	The Decade of the 70's	
	1980 to the Present	12
	References	14
111.	BASIC ELEMENTS OF AI	15
	Heuristic Search	
	Knowledge Representation	
	Logical Representation Schemes	

Semantic Networks	17
Procedural Representations and Production Systems	
Analogical or Direct Representations	18
Property Lists	
Frames and Scripts	
Semantic Primitives	20
Computational Logic	
Propositional Logic	
Predicate Logic	22
Logical Inference	
Resolution Method	23
Factors Which Affect the Efficiency of Deductive Reasoning	23
Non-Resolution Theorem Proving	
Common Sense Ressoning	
Non-Deductive Problem Solving Approaches	
Elements of a Problem Solver	
Problem Reduction	25
Problem Reduction	26
More Efficient Tactics for Problem Solving	27
Hierarchical Planning and Repair	
Problem Solving by Creating and Then Debugging Almost-	
Right Plans	27
Special Purpose Subplanners	
Constraint Satisfaction	
Relevant Backtracking (Dependency-Directed or Non-	
Chronological Backtracking)	28
Disproving	
Pseudo-Reduction	
Goal-Regression	
Production Systems	28
Al Languages, Tools and Computers	
Programming Needs of Al	
List Representations	
LISP	
Background	35
Basic Elements of LISP.	35
Variables	
Defining New Functions	36
Predicates	
Conditional Branching	36
Recursive Functions	36
Review of Program Features of LISP	37
LISP Today	
PROLOG.	
History	
Nature of PROLOG	
PROLOG Today	30
Other Al Languages	
At Computational Facilities	4 0

		Contents and Subject Index	ix
	Requirements		41
	Al Machines		
	Future		
	Summary and Forecast		
	References		
		• • • • • • • • • • • • • • • • • • • •	
iv.	APPLICATIONS		. 45
٧.	THE PRINCIPAL PARTICIPANTS		. 49
VI.	STATE-OF-THE-ART		
	General		
•	Basic Core Topics		
	Expert Systems		
	Natural Language		
	Computer Vision		
	Conclusions		
	References	• • • • • • • • • • • • • • • • • • • •	.54
VII.	TOWARDS THE FUTURE		
V I I .	General		
	Expert Systems		
	Natural Language		
	Computer Vision		
	Intelligent Robots		
	Industrial Applications		
	Computers for Future Automation		.56
	Computer Aided Instruction (CAI)	• • • • • • • • • • • • • • • • • • • •	.56
	Learning by Computers		
	The Social Impacts		.57
SOLI	RCES FOR FURTHER INFORMATION		EO
•	Journals	• • • • • • • • • • • • • • • • • • • •	.00
	Conferences		
	Recent Books		
	Trouble Books	· · · · · · · · · · · · · · · · · · ·	. 50
GLO	SSARY		.59
		•	
	PART B		
	APPLICATIONS-EXPERT SYSTEMS, (NATURAL LANGUAGE PROC		
۱.	EXPERT SYSTEMS		.71
	Introduction		71
	What Is an Expert System?		71
	The Basic Structure of an Expert System	n	71
	The Knowledge Base		77
	The Control Structure	• • • • • • • • • • • • • • • • • • • •	72
	Uses of Expert Systems	• • • • • • • • • • • • • • • • • • • •	./3
	a: muhait alstailis	• • • • • • • • • • • • • • • • • • • •	./3

` .	Architecture of Expert Systems Existing Expert Systems Constructing an Expert System Summary of the State-of-the-Art Future Trends. References	78 78 83 84
11.	COMPUTER VISION	
	Introduction	87
	Definition	87
	Relation to Human Vision	87
	Basis for a General Purpose Image Understanding System	89
	Basic Paradigms for Computer Vision	91
	Hierarchical Bottom-Up Approach	91
	Hierarchical Top-Down Approach	91
	Heterarchical Approach	91
	Blackboard Approach	93
	Levels of Representation	
	Research in Model-Based Vision Systems	
	Industrial Vision Systems	
	General Characteristics	
•	Examples of Efforts in Industrial Visual Inspection Systems	98
	Examples of Efforts in Industrial Visual Recognition and	
	Location Systems	
	Commercially Available Industrial Vision Systems	
	Who Is Doing It	
	Research Oriented	
	Universities Funded Under DARPA IU Program	
	Other Active Universities	
	Non-Profits	
	U.S. Government.	
	Commercial Vision Systems Developers	
	Summary of the State-of-the-Art	
	Human Vision.	
	Low and Intermediate Levels of Processing	
	Industrial Vision Systems	
	General Purpose Vision Systems	105
	Techniques	
	Hardware and Architecture	
	Al and General Vision Systems	
	Modeling and Programming	
	Knowledge Acquisition	
	Sensing	
	Industrial Vision Systems	
	Future Applications	
	Conclusion	
		109

II. NATURAL LANGUAGE PROCESSING (NLP)	111
Introduction	
Applications	111
Approach	
Type A: No World Models	112
Key Words or Patterns	112
Limited Logic Systems	112
Type B: Systems That Use Explicit World Models	113
Type C: Systems That Include Information About the Goa	
Beliefs of Intelligent Entities	113
The Parsing Problem	
Grammars	113
Phrase Structure Grammar—Context Free Grammar	113
Transformational Grammar	
Case Grammar	
Semantic Grammars	114
Other Grammars	174
Semantics and the Cantankerous Aspects of Language	
Multiple Word Senses	
Pronouns	
Ellipsis and Substitution	
Knowledge Representation	
Procedural Representations	
Declarative Representations	
Case Frames	
Conceptual Dependency	
Frame	
Scripts	
Syntactic Parsing	
Template Matching	
Transition Nets	
Other Parsers	
Semantics, Parsing and Understanding	
Natural Language Processing (NLP) Systems	119
Kinds	
Question Answering Systems	119
Natural Language Interfaces (NLI's)	119
Computer-Aided Instruction (CAI)	120
Discourse	120
Text Understanding	
Text Generation	120
Research NLP Systems	120
Commercial Systems	120
State of the Art	122
Principal U.S. Participants in NLP.	122
Research and Development	122
Non-Profit	122
Universities	123
	123

	Principal U.S. Government Agencies Funding NLP Research	. 124
	Commercial NLP Systems	. 124
	Non-U.S	. 124
	Forecast	. 124
	References	. 125
	•	
IV.	SPEECH RECOGNITION AND SPEECH UNDERSTANDING	. 127
	Introduction	. 127
	Applications	. 127
	The Nature of Speech Sounds	. 127
	Isolated Word Recognition	. 129
	Recognizing Continuous Speech	. 131
	Speech Understanding	. 131
	The ARPA Speech Understanding Research (SUR) Project	. 133
	Introduction	. 133
	HEARSAY II	. 133
	HARPY	. 135
	HWIM	. 135
	Summary of the ARPA SUR Program	- 5
	State of the Art	. 139
	Speech Recognition	
	Speech Understanding	
	Who Is Doing Speech Recognition Related Work	
	Commercial Organizations	
	Universities	
	Problems and Issues	
	Future Trends	
	References	. 142
V.	SPEECH SYNTHESIS	
	Introduction.	
	Why Synthesis	
	Human Speech	
	Electronic Simulation of the Speech Mechanism	
	Parametric Coding Schemes	
	Introduction	
	Linear Predictive Coding (LPC)	
	PARCOR	
	Line Spectrum Pair (LSP)	
	Parametric Waveform Coding (PWC)	
	Waveform Coding Schemes	
	ADPCM	
	Mozer's Waveform Coding	
	Coding the Words to Be Stored	
	Generating Speech from Text	
	State of the Art	

	Some Available Commercial Systems. Problems and Issues. Forecast References	. 153 . 153
VI.	PROBLEM SOLVING AND PLANNING Introduction. Planning Defined. Basic Planning Paradigm Paradigms for Generating Plans Nonhierarchical Planning Hierarchical Planning Utilization of Skeleton Plans Opportunistic Planning. Planners. Trends. References	. 157 . 157 . 157 . 160 . 160 . 160 . 162 . 162 . 162 . 162
	PART C BASIC AI TOPICS—AUTOMATION, SEARCH-ORIENTED PROBLEM SOLVING, KNOWLEDGE REPRESENTATION, COMPUTATIONAL LOGIC	
I.	ARTIFICIAL INTELLIGENCE AND AUTOMATION Mechanization and Automation Tools, Machines, Teleoperators, Robots Computation and Artificial Intelligence Relationship of Al to Automation Al and Other Fields References	. 181 . 181 . 182 . 183 . 183
11.	SEARCH-ORIENTED AUTOMATED PROBLEM SOLVING AND PLANNING TECHNIQUES. All as Problem Solving	. 188 188 188
	Problem Solving Using Blind Search Breadth-First Search Depth-First Search Backward Chaining Problem Reduction Heuristic State-Space Search Game Tree Search	192 192 192 192 194 194
	Representation	195 195

Other Consideration	s
Difference Reduction (s
Approach	
	for Problem Solving
	lesearch
	cant Number of Tactics
	ucture
	Execution
	ent
	s Learned from Plan Execution to Plan
	t
neterences	
III KNOWI EDCE DEDDECE	NTATION201
•	
	ion Schemes
	ntations and Production Systems 202
	Representations
	ges
Some Research Needs.	
Universities	
Other	
Future Directions	
References	
	IC
Propositional Logic	
	oday
Theorem Proving	
	gic
	uzzy Logics
0-4	005

PART A ARTIFICIAL INTELLIGENCE— THE CORE INGREDIENTS

The information in Part A is from An Overview of Artificial Intelligence and Robotics. Volume I—Artificial Intelligence, Part A—The Core Ingredients, by William B. Gevarter, Office of Aeronautics and Space Technology, National Aeronautics and Space Administration, June 1983.

ACKNOWLEDGMENTS

I wish to thank the many people and organizations who have contributed to this report, both in providing information, and in reviewing the report and suggesting corrections, modifications and additions. I particularly would like to thank Jerry Cronin of U.S. Army Signal Warfare Lab., Ted Hopp and Len Haynes of NBS, Bob Hong and his associates at Grumman Aerospace Corp., Karen Hagedorn of Symbolics, Mache Creeger of LISP Machine, Inc., Fred Blair of IBM T.J. Watson Research Center, Jude Franklin of the U.S. Navy Center for Applied Research in AI, and David H. Brown of SRI International for their review of this report and their many helpful suggestions. However, the responsibility of any remaining errors or inaccuracies must remain with the author.

I. ARTIFICIAL INTELLIGENCE-WHAT IT IS

Definition

Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable publicity. Many applications are now under development. One simple view of AI is that it is concerned with devising computer programs to make computers smarter. Thus, research in AI is focused on developing computational approaches to intelligent behavior. This research has two goals: 1) making machines more useful and 2) understanding intelligence. This report is primarily concerned with the first goal.

The computer programs with which AI is concerned are primarily symbolic processes involving complexity, uncertainty, and ambiguity. These processes are usually those for which algorithmic solutions do not exist and search is required. Thus, AI deals with the types of problem solving and decision making that humans continually face in dealing with the world.

This form of problem solving differs markedly from scientific and engineering calculations that are primarily numeric in nature and for which solutions are known that produce satisfactory answers. In contrast, AI programs deal with words and concepts and often do not guarantee a correct solution—some wrong answers being tolerable as in human problem solving.

Table I-1 provides a comparison between AI and conventional computer programs. A key characteristic of AI programs is "heuristic search." Baraiko (1982, p. 448) quotes Minsky as saying "If you can't tell a computer how best to do something, program it to try many approaches." However, in complex problems the number of possible solution paths can be enormous. Thus, AI problem solving is usually guided by empirical rules—rules of thumb—referred to as "heuristics"—which help constrain the search.

TABLE I-1. Comparison of AI with Conventional Programming.

Artificial Intelligence

- · Primarily symbolic processes
- · Heuristic search (solution steps implicit)
- Control structure usually separate from domain knowledge
- · Usually easy to modify, update and enlarge
- · Some incorrect adswers often tolerable
- · Satisfactory answers usually acceptable

Conventional Computer Programming

- · Often primarily numeric
- Algorithmic (solution steps explicit)
- Information and control integrated together
- · Difficult to modify
- · Correct answers required
- · Best possible solution usually sought

^{*}Also sometimes referred to as machine intelligence or heurstic programming. The relationship of Al to automation is discussed in Chapter I of Part C of this report.

Another aspect of AI programs is the extensive use of "domain knowledge." Intelligence is heavily dependent on knowledge. This knowledge must be available for use when needed during the search. It is common in AI programs to separate this knowledge from the mechanism that controls the search. In this way, changes in knowledge only require changes in the knowledge base. In contrast, domain knowledge and control in conventional computer programs are integrated together. As a result, conventional computer programs are difficult to modify, as the implications of the changes made in one part of the program must be carefully examined for the impacts and the changes required in other parts of the program.

The Basic Elements of Al

Nilsson (1982, see also Brown, 1981), a pioneer in AI and currently head of the SRI AI Center, likes to characterize the components of AI in terms of what he calls the onion model (see Figure 1). The inner ring depicts the basic elements from which the applications shown in the next ring are composed. We will first consider the quadrant designated as heuristic search.

Heuristic Search

Much of the early work in AI was focused on deriving programs that would search for solutions to problems. Note that every time one makes a decision, the situation is changed opening up new opportunities for further decisions. Therefore there are always branch points. Thus, one of the usual ways of representing problem solving in AI is in terms of a tree (see, e.g., Figure 1, Chapter III), starting at the top with an initial condition and branching every time a decision is made. As one continues down the tree many different decision possibilities open up, so that the number of branches at the bottom can get to be enormous for problems requiring many solution steps. Therefore, some way is needed to efficiently search the trees.

Initially, there were "blind" methods for searching trees. These were orderly search approaches that assured that the same solution path would not be tried more than once. However for problems more complex than games and puzzles, these approaches were inadequate. Therefore, rules of thumb (empirical rules), referred to as "heuristics," were needed to aid in choosing the most likely branches, so as to narrow the search. As an example, a simple heuristic to help choose which roads to follow when driving in the evening on back roads from Washington, DC to San Francisco is: "head for the setting sun." This may not produce the most optimum path, but can serve to help advance one toward one's goal. Heuristic rules like this can help guide search—reducing search enormously.

Knowledge Representation

Early on, AI researchers discovered that intelligent behavior is not so much due to the methods of reasoning, as it is dependent on the knowledge one has to reason with. (As humans go through life they build up tremendous reservoirs of knowledge.) Thus, when substantial knowledge has to be brought to bear on a problem, methods are needed to efficiently model this knowledge so that it is readily accessible. The result of this emphasis on knowledge is that knowledge representation is one of the most active areas of research in AI today. The needed knowledge is not easy to represent, nor is the best representation obvious for a given task.