Linux ¥k it 538

(SR3ThR - SB2hR)

EEEEEEEEEEE

Linux Kernel Development

Second Edition

PEARSON
;' =0

oean Novell

(2%() Robert Love

Lt T b ORR A

China Machine Press

: 2

(ZEXHR - S52kR)
(3€) Roi)ert Love

B AR AR AR

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China

Machine Press.
Original English language title: Linux Kernel Development, Second Edition (ISBN 0-672-

32720-1) by Robert Love, Copyright © 2005.
All rights reserved.
Published by arrangement with the original publisher, Pearson Education, Inc., publishing

as Novell Press.
For sale and distribution in the People’s Republic of China exclusively (except Taiwan,

Hong Kong SAR and Macau SAR).

& 53 L RENRR HiPearson Education Asia Led SR Tl AR H s x MR . K&
WA E S, TRV R E RIS REBNE.

R Th e AR EFIEERN (FafEhEEE, WS R BUX e E & B X))
WELRT,

#4543 il A Pearson Education (¥3A4%# HRER) BEBIRE, TREED
?‘5%%‘0

I, IR,
FfE@miE ALREHRA RIS

AZBENEIZE. BF. 01-2005-4834
BEEREE (CIP) ¥R

Linux Bt 538 (30K - B28R) / (¥) K (Love, R) ¥ —ALx: U
Tk AR, 2006.1

(BHFIREE)
45483 Linux Kemel Development, Second Edition

ISBN 7-111-17575-1
[.L 0.7 I Linuxipte RS- BAFRH-%3 V. TP316.89

s [E B A B B AR CIPRIE B 7 (2005) 551193475

Bk Dol ER AL (st msRE 5 EAR22'S BBBARD 100037)
FEGE: BiRE

L EEREERIA R A SR - FEBEILRRAHRRT
20064E1 A 1S LIRENR

718mm x 1020mm 1/16 - 26.75E05%

EN%k. 0001-3 000fH

EHr: 40.005¢

FLiaEAS, aA @, BO. BRI, mAHRITHAR
Ak (010) 68326294

BhREBI1E

XEZREALRE, FORRKMBHEEMAESHRNERNTE, 5 ERE LR
FHENGIRRE T EZHHORS, BERXENAS, FEXREGSBERRBENHA T
EERAREN, BERNE, ERLENHES, ERMELRSHE REKEESH
&g, HEHLERDEF 28 WAL RN & ORISR RATS, kT2 i
FHEEE, TR THAMNTERN, SBETERMET, BEELANE, XA52
B, EMEHFREEE AN HRE,

WA, EL2FREBMAARMNEST, REMATENL LR RRE, WAL BT
RAZEY)., IR UTREHERMERRTERIE, AR, TELEMRise
HEGE EEEERRE, AREGAEAREHARE. ML RBVHILRT, %
EERSERELX T ENRZ2E BT ERRRENSREM N T ZEBEE 24,
Bk, SHE—#ESMEF RIS R E AT SRR BRI ER,
S AN, BIRAEAHR —KAXRNSHZE.,

HLb Dl AR A B B SUIE BA PR A AR R RIRE “HIREARTIRS ™. H1998%
g, FEATRE LIEE AR T#:E. BIBEMBEM L. B/ LEGTHRE S,
#A'15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZE{it 53 2 £ H
MARRLTRIFMAERXRZ, NEMNBAEHEEMEM F Bk HTanenbaum,
Stroustrup, Kernighan, Jim Gray% Xl &K F—#BHER, UL “HEIESEAE" %
ERMAR, BHEREHC], HRERER. KAELAQENHE, BIEAR TXENBE R
Ft&iA,

“HRPLFHENS" LR TESE TENMEZRRE HRE, NSRRI
THEMEEES, TAFSEMAETHIEMERNTE, TEBMHEZHMEY%LE
HIEREHREAEE, ANCERALBMHHEAER. £4, “HENLREAE B2
HAR TEE SR, XEBEEEETR I TREFMOMR, HETrLERRANERK
MISEZNHE, it — ST 5RBITT 7T RSHERM,

MEFMBIRNOP TENEM S ENEHRL, 2FRMEMFENLEM TR
M REEA—TFIN R, A, EEATBMASHEMODE, £ “pEygy”
RLEHRZ T HR A RFIR T ENLEM . B “HEILRZEAR" 250, HEERNE
., WISEMFFRE “SREFIRPBE" , RN, 3I#LEBTNEEHSH “Schaum’s
Outlines” RFNAH, “2ELHU¥INIHIEF. HTRIEX=ZEABOBEYE, FHd
AT EIFHRAZBEMENNIRS, LEATRIET HER%E. ke, EEks,
RBFHE RS, EHA%, EERERY, BRAS, I A%, FEBHE KRS, BR

iv

ﬁlﬂk%\ﬁﬁiﬁﬁ%*@AE*%‘kﬁﬁﬁﬁfkﬁxkﬁM%ﬁ#\¢m
k%‘ﬂﬁﬁﬁik#‘ﬂMk#‘m%I#%*@Ei%@%éﬂﬁ%ﬁ*b%@
V\]iﬁi(i‘?ﬂﬂﬂ?ﬂ*@&ﬁﬁﬂﬁ"]%/l‘@ﬁiﬁm%/&"’?%?ﬂﬁﬁ “ERBRERSE”, AHEA
B EBE MRS,
zzﬁﬁﬁ%mﬁﬁﬁ%ﬁmmﬁm%maﬁm%a,%EWE&%&%M&M%
?ﬂ%ﬁ%&%ﬂﬁ%o£¢W§&ﬁﬁE%MJJLSmmm,UCBmmW,QM.
U. SR LM AEREA. RS TRFRIE. BiBgh., RIERL. HHENGBRE
W, MEERE. RIBEE. KEIE, BEEE. BEEWS% . BEEFSRARFTENL
£ ERFFIRAEORE, A& B G—ARHAEFRITEZF. AEL=+
ﬁﬁxﬁ‘ﬁWEﬁ%ﬂﬁ%ﬂﬁ%%ﬁ%%oEﬁ%ﬁ%ﬁﬁ%%ﬁiﬁmﬁmZ?,
iﬁ%%%&ﬁﬁﬂﬂ%ﬂ@’é‘ﬁ&*&lﬁiﬁﬁ)\io
ﬂﬁ%@%‘%ﬂ%&ﬁ‘“ﬁ%ﬁ%‘F%%$ﬁ‘ﬁﬁmﬁﬁ,ﬁ%Hiﬁﬁ
m%@%ﬁTﬁﬁmﬁﬁ,Eﬁmmﬁﬁ%ﬁégi,ﬁﬁﬁ%ﬁﬂlﬂﬁﬂﬁﬂﬁ*
2tk BARRIEER. B R R R RN SR SRR 168 2\ FIWOR E IR A%
%ﬁﬁﬂ%lﬁﬁﬁ@ﬂﬁ%%ﬁﬁ,ﬁﬁ%ﬁ%ﬁ%@?:

B, -l : hzjsj@hzbook.com
BRHEIE: (010) 68995264
ﬁ%%ﬂ:%ﬁﬁﬁﬁ@ﬁﬁ&ﬁﬁ“%
WP B 4R . 100037

Praise for the first edition of Robert Love’s
Linux Kernel Development

“Linux Kernel Development is a starting point that will prove useful to any developer trying to get
up to speed with one or more kernel subsystems. ... The presentation is clear, the writing is
enjoyable to read, and the information is accurate and useful. Linux Kernel Development belongs
on the shelf of any developer who is interested in kernel work.”

—Jonathan Corbet, LWN.net

“Developers who want to jump in and help out the greater cause, will find this book the book
to have.... If you like the challenge, or if you need to know more about the Linux kernel in
general for any reason, this is definitely the book to get. It would certainly be one of your best

reads on operating systems topics.”

—FEugenia Loli-Queru, OSNews

“If you are a Linux wizard or want to become one, you'll need Linux Kernel Development by
Robert Love. It starts with a brief but useful introduction to operating systems and kernels and
then goes on to break down the architecture of Linux very clearly. It also has an attribute we
love: It gets to the point quickly, making the reasonable assumption that the reader has a clue.”

—Mark Gibbs, NetworkWorld

“The author’s knowledge, passion and excitement about the kernel show greatly and make

this an enjoyable, easy-to-follow and compelling read.... I've already applied some of the
knowledge in my normal application development on Linux at work.... If you're looking to

do some kernel hacking or just interested in how the Linux kernel works, then I'd recommend

reading this book.
—Richard Dawe

“One of the very best technical books I own.... The author presents information the way I want
to see it. I really like the historical background information on Linux and comparisons to Unix.
If you are looking for one single reference on Linux programming, I recommend this title.

Not just for kernel hacking.”

—Tom Gross, practical.org

Foreword

As the Linux kernel and the applications that use it become more widely used, we are
seeing an increasing number of system software developers who wish to become
involved in the development and maintenance of Linux. Some of these engineers are
motivated purely by personal interest, some work for Linux companies, some work for
hardware manufacturers, and some are inivolved with in-house development projects.

But all face a common problem: The learning curve for the kernel is getting longer
and steeper. The system is becoming increasingly complex, and it is very large. And as the
years pass, the current members of the kernel development team gain deeper and broader
knowledge of the kernel’s internals, which widens the gap between them and newcomers.

I believe that this declining accessibility of the Linux source base is already a problem
for the quality of the kernel, and it will become more serious over time. Those who care
for Linux clearly have an interest in increasing the number of developers who can con-
tribute to the kernel.

One approach to this problem is to keep the code clean: sensible interfaces, consistent
layout, “do one thing, do it well,” and so on. This is Linus Torvalds’ solution.

The approach that I counsel is to liberally apply commentary to the code: words that
the reader can use to understand what the coder intended to achieve at the time. (The
process of identifying divergences between the intent and the implementation is known
as debugging. It is hard to do this if the intent is not known.)

But even code commentary does not provide the broad-sweep view of what a major
subsystem is intended to do, and how its developers set about doing it.

This, the starting point of understanding, is what the written word serves best.

Robert Love’s contribution provides a means by which experienced developers can gain
that essential view of what services the kernel subsystems are supposed to provide, and how
they set about providing them. This will be sufficient knowledge for many people: the curi-
ous, the application developers, those who wish to evaluate the kernel’s design, and others.

But the book is also a stepping stone to take aspiring kernel developers to the next
stage, which is making alterations to the kernel to achieve some defined objective. |
would encourage aspiring developers to get their hands dirty: The best way to understand
a part of the kernel is to make changes to it. Making a change forces the developer to a
level of understanding that merely reading the code does not provide. The serious kernel
developer will join the development mailing lists and will interact with other developers.
This is the primary means by which kernel contributors learn and stay abreast. Robert
covers the mechanics and culture of this important part of kernel life well.

Please enjoy and learn from Robert’s book. And should you decide to take the next
step and become a member of the kernel development community, consider yourself
welcomed in advance. We value and measure people by the usefulness of their contribu-
tions, and when you contribute to Linux, you do so in the knowledge that your work is
of small but immediate benefit to tens or even hundreds of millions of human beings.
This is a most enjoyable privilege and responsibility.

Andrew Morton
Open Source Development Labs

Preface

When I was first approached about converting my experiences with the Linux kernel
into a book, I proceeded with trepidation. 1 did not want to write simply yet another
kernel book. Sure, there are not that many books on the subject, but I still wanted my
approach to be somehow unique. What would place my book at the top of its subject? I
was not motivated unless I could do something special, a best-in-class work.

I then realized that I could offer quite a unique approach to the topic. My job is
hacking the kernel. My hobby is hacking the kernel. My love is hacking the kernel.
Over the years, I have surely accumulated interesting anecdotes and important tips.
With my experiences, I could write a book on how to hack the kernel and—more
importantly—how not to hack the kernel. Primarily, this is a book about the design and
implementation of the Linux kernel. The book’s approach differs from would-be
competition, however, in that the information is given with a slant to learning enough
to actually get work done—and getting it done right. I am a pragmatic guy and this is a
practical book. It should be fun, easy to read, and useful.

I hope that readers can walk away from this book with a better understanding of the
rules (written and unwritten) of the kernel. I hope readers, fresh from reading this book
and the kernel source code, can jump in and start writing useful, correct, clean kernel
code. Of course, you can read this book just for fun, too.

That was the first edition. Time has passed, and now we return once more to the fray.
This edition offers quite a bit over the first: intense polish and revision, updates, and
many fresh sections and all new chapters. Changes in the kernel since the first edition
have been recognized. More importantly, however, is the decision made by the Linux
kernel community' to not proceed with a 2.7 development kernel in the near feature.
Instead, kernel developers plan to continue developing and stabilizing 2.6. This implies
many things, but one big item of relevance to this book is that there is quite a bit of
staying power in a recent book on the 2.6 Linux kernel. If things do not move too
quickly, there is a greater chance of a captured snapshot of the kernel remaining relevant
long into the future. A book can finally rise up and become the canonical documenta-
tion for the kernel. I hope that you are holding that book.

Anyhow, here it is. I hope you enjoy it.

1 This decision was made in the summer of 2004 at the annual Linux Kernel Developers Summit

in Ottawa, Canada.

So Here We Are

Developing code in the kernel does not require genius, magic, or a bushy Unix-hacker
beard. The kernel, although having some interesting rules of its own, is not much differ-
ent ffom any other large software endeavor. There is much to learn—as with any big
project—but there is not too much about the kernel that is more sacred or confusing
than anything else.

It is imperative that you utilize the source. The open availability of the source code for
the Linux system is a rarity that we must not take for granted. It is not sufficient only to
read the source, however. You need to dig in and change some code. Find a bug and fix it.
Improve the drivers for your hardware. Find an itch and scratch it! Only when you write

code will it all come together.

Kernel Version

This book is based on the 2.6 Linux kernel series. Specifically, it is up to date as of Linux
kernel version 2.6.10. The kernel is a moving target and no book can hope to capture a
dynamic beast in a timeless manner. Nonetheless, the basics and core internals of the ker-
nel are mature and I work hard to present the material with an eye to the future and

with as wide applicability as possible.

Audience

This book targets software developers who are interested in understanding the Linux
kernel. It is not a line-by-line commentary of the kernel source. Nor is it a guide to
developing drivers or a reference on the kernel API (as if there even were a formal ker-
nel API—hah!). Instead, the goal of this book is to provide enough information on the
design and implementation of the Linux kernel that a sufficiently accomplished pro-
grammer can begin developing code in the kernel. Kernel development can be fun and
rewarding, and I want to introduce the reader to that world as readily as possible. This
book, however, in discussing both theory and application, should appeal to readers of
either interest. I have always been of the mind that one needs to understand the theory
to understand the application, but I do not feel that this book leans too far in either
direction. I hope that whatever your motivations for understanding the Linux kernel, this
book will explain the design and implementation sufficiently for your needs.

Thus, this book covers both the usage of core kernel systems and their design and
implementation. I think this is important, and deserves a moment’s discussion. A good
example is Chapter 7, “Bottom Halves and Deferring Work,” which covers bottom
halves. In that chapter, I discuss both the design and implementation of the kernel’s bot-
tom-half mechanisms (which a core kernel developer might find interesting) and how to
actually use the exported interfaces to implement your own bottom half (which a device

xi

driver developer might find interesting). In fact, I believe both parties should find both
discussions relevant. The core kernel developer, who certainly needs to understand the
inner workings of the kernel, should have a good understanding of how the interfaces
are actually used. At the same time, a device driver writer will benefit from a good
understanding of the implementation behind the interface.

This is akin to learning some library’s API versus studying the actual implementation
of the library. At first glance, an application programmer needs only to understand the
API—it is often taught to treat interfaces as a black box, in fact. Likewise, a library devel-
oper is concerned only with the library’s design and implementation. I believe, however,
both parties should invest time in learning the other half. An application programmer
who better understands the underlying operating system can make much greater use of
it. Similarly, the library developer should not grow out of touch with the reality and
practicality of the applications that use the library. Consequently, I discuss both the
design and usage of kernel subsystems, not only in hopes that this book will be useful to
either party, but also in hopes that the whole book is useful to both parties.

[assume that the reader knows the C programming language and is familiar with
Linux. Some experience with operating system design and related computer science
concepts is beneficial, but I try to explain concepts as much as possible—if not, there are
some excellent books on operating system design referenced in the bibliography.

This book is appropriate for an undergraduate course introducing operating system
design as the applied text if an introductory book on theory accompanies it. It should fare
well either in an advanced undergraduate course or in a graduate-level course without
ancillary material. I encourage potential instructors to contact me; I am eager to help.

Book Website

I maintain a website at http://tech9.net/rml/kernel_book/ that contains information
pertaining to the book, including errata, expanded and revised topics, and information
on future printings and editions. I encourage readers to check it out. I also apologize
profusely for the previous end-of-sentence preposition, it was uncalled for, but the
revamped sentence was hard to read, it was confusing, and you deserve berter.

Second Edition Acknowledgments

Like most authors, I did not write this book in a cave (which is a good thing, because
there are bears in caves) and consequently many hearts and minds contributed to the
completion of this manuscript. Although no list would be complete, it is my sincere
pleasure to acknowledge the assistance of many friends and colleagues who provided

encouragement, knowledge, and constructive criticism.
First off, I would like to thank all of the editors who worked long and hard to make

this book better. I would particularly like to thank Scott Meyers, my acquisition editor,

xii

for spearheading this second edition from conception to final product. I had the wonder-
ful pleasure of again working with George Nedeff, production editor, who kept every-
thing in order. Extra special thanks to my copy editor, Margo Catts. We can all only hope
that our command of the kernel is as good as her command of the written word.

A special thanks to my technical editors on this edition: Adam Belay, Martin Pool, and
Chris Rivera. Their insight and corrections improved this book immeasurably. Despite
their sterling efforts, however, any remaining mistakes are my own fault. The same big
thanks to Zack Brown, whose awesome technical editing efforts on the first edition still
resonate loudly.

Many fellow kernel developers answered questions, provided support, or simply wrote
code interesting enough on which to write a book. They are Andrea Arcangeli, Alan
Cox, Greg Kroah-Hartinan, Daniel Phillips, Dave Miller, Patrick Mochel, Andrew
Morton, Zwane Mwaikambo, Nick Piggin, and Linus Torvalds. Special thanks to the ker-
nel cabal (there is no cabal).

Respect and love to Paul Amici, Scott Anderson, Mike Babbitt, Keith Barbag, Dave
Camp, Dave Eggers, Richard Erickson, Nat Friedman, Dustin Hall, Joyce Hawkins,
Miguel de Icaza, Jimmy Krehl, Patrick LeClair, Doris Love, Jonathan Love, Linda Love,
Randy O’Dowd, Sal Ribaudo and mother, Chris Rivera, Joey Shaw, Jon Stewart, Jeremy
VanDoren and family, Luis Villa, Steve Weisberg and family, and Helen Whisnant.

Finally, thank you to my parents, for so much.

Happy Hacking!

Robert Love
Cambridge,
Massachusetts

About the Author

Robert Love is an open source hacker who has used Linux since the early days.
Robert is active in and passionate about both the Linux kernel and the GNOME com-
munities. Robert currently works as Senior Kernel Engineer in the Ximian Desktop
Group at Novell. Before that, he was a kernel engineer at MontaVista Software.

Robert’s kernel projects include the preemptive kernel, the process scheduler, the ker-
nel events layer, VM enhancements, and multiprocessing improvements. He is the author
and maintainer of schedutils and GNOME Volume Manager.

Robert has given numerous talks on and has written multiple articles about the Linux
kernel. He is a Contributing Editor for Linux Journal.

Robert received a B.A. in Mathematics and a B.S. in Computer Science from the
University of Florida. Born in South Florida, Robert currently calls Cambridge,
Massachusetts home. He enjoys college football, photography, and cooking.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, in
what areas you'd like to see us publish, and any other words of wisdom you're willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book and
that due to the high volume of mail I receive I may not be able to reply to every message. When
you write, please be sure to include this book’ title and author as well as your name and
email address or phone number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@novellpress.com
Mail: Mark Taber
Associate Publisher
Novell Press/Pearson Education
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

For more information about this book or other Novell Press titles, visit our website at
www.novellpress.com. Type the ISBN or the title of a book in the Search field to find
the page you're looking for.

Table of Contents

1 Introduction to the Linux Kernel 1
Along Came Linus: Introduction to Linux 2
Overview of Operating Systems and Kernels 4
Linux Versus Classic Unix Kernels 6
Linux Kernel Versions 8
The Linux Kernel Development Community 9
Before We Begin 9

2 Getting Started with the Kernel 11

Obtaining the Kernel Source 11
Installing the Kernel Source 11
Using Patches 12

The Kernel Source Tree 12

Building the Kernel 13
Minimizing Build Noise 15
Spawning Multiple Build Jobs 15
Installing the Kernel 15

A Beast of a Different Nature 16
No libc 16
GNUC 17
No Memory Protection 19
No (Easy) Use of Floating Point 19
Small, Fixed-Size Stack 19
Synchronization and Concurrency 20
Portability Is Important 20

So Here We Are 21

3 Process Management 23
Process Descriptor and the Task Structure 24
Allocating the Process Descriptor 25
Storing the Process Descriptor 26
Process State 27
Manipulating the Current Process State 29

xvi Contents

Process Context 29
The Process Family Tree 29
Process Creation 30
Copy-on-Write 31
fork() 31
vfork() 32
The Linux Implementation of Threads 33
Kernel Threads 35
Process Termination 35
Removal of the Process Descriptor 36
The Dilemma of the Parentless Task 37
Process Wrap Up 38

Process Scheduling 39

Policy 40
17/0-Bound Versus Processor-Bound Processes
40)

Process Priority 41
Timeslice 42
Process Preemption 43
The Scheduling Policy in Action 43
The Linux Scheduling Algorithm 43
Runqueues 44
The Priority Arrays 47
Recalculating Timeslices 48
schedule() 48
Calculating Priority and Timeslice 50
Sleeping and Waking Up 52
The Load Balancer 54
Preemption and Context Switching 57
User Preemption 58
Kernel Preemption 58
Real-Time 59
Scheduler-Related System Calls 60

Scheduling Policy and Priority-Related System
Calls 61

Processor Affinity System Calls 61
Yielding Processor Time 62
Scheduler Finale 62

System Calls 63
APIs, POSIX, and the C Library 64
Syscalls 65
System Call Numbers 65
System Call Performance 66
System Call Handler 66
Denoting the Correct System Call 67
Parameter Passing 67
System Call Implementation 68
Verifying the Parameters 68
System Call Context 70
Final Steps in Binding a System Call 71
Accessing the System Call from User-Space 72
Why Not to Implement a System Call 73
System Calls in Conclusion 74

Interrupts and Interrupt Handlers 75
Interrupts 75
Interrupt Handlers 76
Top Halves Versus Bottom Halves 77
Registering an Interrupt Handler 77
Freeing an Interrupt Handler 79
Writing an Interrupt Handler 80
Shared Handlers 81
A Real-Life Interrupt Handler 82
Interrupt Context 84
Implementation of Interrupt Handling 85
/proc/interrupts 87
Interrupt Control 88
Disabling and Enabling Interrupts 89
Disabling a Specific Interrupt Line 90
Status of the Interrupt System 91
Don’t Interrupt Me; We're Almost Done! 92

Contents xvii

xviii Contents

7 Bottom Halves and Deferring Work 93
Bottom Halves 94
Why Bottom Halves? 94
A World of Bottom Halves 95
Softirgs 97
Implementation of Softirgs 97
Using Softirgs 100
Tasklets 101
Implementation of Tasklets 101
Using Tasklets 104
ksoftirqd 105
The Old BH Mechanism 107
Work Queues 108
Implementation of Work Queues 108
Using Work Queues 111
The Old Task Queue Mechanism 114
Which Bottom Half Should I Use? 115
Locking Between the Bottom Halves 116
Disabling Bottom Halves 116
The Bottom of Bottom-Half Processing 118

8 Kernel Synchronization Introduction 119
Critical Regions and Race Conditions 120
Why Do We Need Protection? 120
Locking 122
What Causes Concurrency, Anyway? 124

So, How Do [Know What Needs Protecting?
125

Deadlocks 126
Contention and Scalability 128
Locking and Your Code 130

9 Kernel Synchronization Methods 131
Atomic Operations 131
Atomic Integer Operations 132
Atomic Bitwise Operations 134

