% & C %

O HEIZS)

Optimizing Multilayer Neural Networks
using Fractal Dimensions of Time-series Data

Ikuo Matsuba, Hironari Masui, and Shingo Hebishima®

Systems Development Laboratory, Hitachi, Ltd.
- 1099 Ohzenji, Asao-ku, Kawasaki-shi 215, Japan
*Hitachi Information & Control Systems, Inc.
2-1 Omika-cho, Hitachi-shi 319-12, Japan

_ Abstract

A fractal dimension of time-series data is used to optimize the three-layer feed-
back neural network which was proposed in the previous paper to detect an
important time structure of time-series data and to predict a future sequence based
on a current input sequence. Optimization means in a sense that the prediction
error is minimized. A time interval giving the same fractal dimensions is used as
an optimal size of the output layer. The number of input units is twice the number
of output units. Furthermore, it is also found that reliability in prediction is
determined empirically as a function of the fractal dimension.

1. Introduction

The representation of temporal knowledge and time correlation in multilayer neural networks
presents a continuous challenge to researchers in the field of artificial neural networks. In the
previous paper [11,{2], a feed-back neural network was proposed and it was found that this network
is capable of detecting a time structure embodied in time-series data . In particular, a regularly
organized time structure is found. This architecture is appropriate for a network in predicting a
sequence based on a current sequence because it can easily respond according to the conditions of the
order and frequency of the input sequence arriving at the network.

However, there remains a problem. The most important concern is the question of how to optimize
the network to obtain the best performance. Provided a three-layer neural network, the number of
hidden units can be determined by the miprmappn, cruepion such as AIC (Akaike's Information
Criterion) to minimize the output (predjcll‘on; 81¥GF Billilg untrained data [1], [2]. A remaining
question is what sizes of input and outjuf 1§¥epy BcPHippropriate for detecting an inherent time
structure and for predicting a future sequengs with thegrjallest error. This problem is hard to be
solved because a unique solution to thig patbleA? haghdp been obtained. The reason is that the
performance of the network depends strorjglyh a stagiic}l feature of the given time-series data. A.
fractal dimension is found to be the most gante measnre gt the statistical feature. Furthermore, it is
also found that reliability in prediction is determined empirically to be an approximately linear
function of the fractal dimension. The specific example considered here consists of time-series data
taken from economic indices.

0-7803-0559-0 /92 $3.00 © 1992 IEEE I-583

2. Fractal Dimensions of Time-series Data
The fractals considered here are sets of states generated by a system whose dynamical behavior is
governed by nonlinear equations. Restricting the discussion to one dimension, a random process

x(®), i.e., a function x of time ¢ whose values are random variables such as x(1), x(2). If x()

contains equal power for all frequencies f, this process is a white noise. If the spectral density S(f) is
proportional to 1/f2, the usual Brownian motion is obtained. In general, the density proportional to
ll‘f'3 corresponds to the fractal Brownian motion whose mean square increments described by

Elx(t)—x(2))12] ~ ley—t, 12 2.1)

with the relationship B=2H+1. Here, E denotes an expectation value. In general, the fractal
dimension D (1<D<2) is defined using B or H as:

D=2-H=(5-B)/2 (2.2)

Recently, a very convenient method for calculating fractal dimensions was developed by Higuchi
[4]. Let x(r) be a given sequence in the interval (1<t<N). The total length A, (0t of this curve is
calculated from

A (O=(N/L)Z;_ M (k+it)—x (k+(Gi—1)) 2.3)

with L =[(N+1-k)/t]t, where the notation [2] is an integer not larger than z. See Fig. 1 for the
definition of A, (). Then, we calculate an average value A(f) of A, (1) with respect to k. If A(t)/t
scales as 72, then D gives a fractal dimension of this time-series data. If the spectral density shows a
power law behavior, then the relationship (2.2) is satisfied. From the definition of A(?), the
deterministic process gives D=1. It is clear that D approaches 2 as the degree of stochasticity
increases.

51(2) &(2)
A A
|

Ax(1)=Zd1()=Z4 XXl

A02)=Zide())=XdX2~X2%2l

Xo X1 X2 X, X4 Xs

Fig. 1. Definition of A (r).

Let us first consider the following simple cases. A first example of the random process is generated
by x(f)=at+§, where ais a positive constant and § is an additive Gaussian random variable with zero
mean. Figure 2 shows the bahavior of this process and its corresponding fractal dimensions. An
interesting fact is that there exist two distinct time regions: 1<r<t, and #,<r where ¢, is about 7. One
corresponds to a random process (D=1.91), while the other represents a linear deterministic process
(D=1.00). This implies that when the process is observed in a short time scale (1sr<t), it is
essentially random. On the contrary, this process is described by a deterministic process when we

I-584

N

et

observe it in a longer time scale (tCSt). In other words, two distinct organized time structures are
observed in each region. Therefore, it is unlikely to predict the sequence whose time interval is
within ¢,

Another example using a moving average of an economic index is shown in Fig. 3. Here, also, are
two distinct time regions. In this case, however, there is a different situation in which D=1.13 in a
short time scale (1<1<20) and D=1.91 in a longer time scale (30<1). Therefore, it will be possible to
predict the sequence whose time interval is within 7.

D=1.13
10'l X

101 \
N 1072

-1.91

Dy
-2
10
% y =1.00 i \
K < -3 \
< 10-3 \\ < 10
4
1074 10
10—5 10—5
1 10 100 1000 1 10 100 1000
t t
Fig. 2. Fractal dimensions of random time-series data. Fig. 3. Fractal dimensions obtained from a moving
average of an economic index.

3. Optimal Sizes of Input and Output Layers

Neural networks are optimized with respect to the numbers of input and output units. To explain
explicitly using a concrete example, a prediction problem is considered here. The purpose is to
predict the sequence x,,, ; ~ x) based on the current input sequence x, ~x,,. Let X denote an average
of the data used in the learning period. To normalize the input and output data in the interval [0, 1],
they are scaled as [1+tanh{(x,-x,¥A }1/2—5x,, where A is a normalization constant. In practice, A is
chosen so that the scaled data are in the interval [0.1, 0.9]. Because of the possibility that the future
sequence is beyond the largest data sampled in the learning period, linear transformation is not
acceptable.

It was found that the feed-back neural network having a structure as shown in Fig. 4 is capable of
detecting an important time structure of the given time-series data f1], [2]. However, there remains

1-585

the problem of determining the network size, especially the number of input and output units.

Fig. 4. Schematic diagram of a feed-back neural network for time-series data.

It is clear that the optimal size is highly dependent on the stochastic nature of the given time-series
data. For example, when the time-series data shown in Fig. 3 is used, it is likely that we cannot
predict a long-term sequence with an interval longer than ¢.. Therefore, the number of output units
must be smaller than this value to obtain reasonable prediction performance. Eventually, it is found
that if the number of output units is taken to be 7, the normalized prediction error defined by

e Z oy ix—x D)2 G.1)

is minimized. Here, L is 3 for the three-layer network. Similar consideration is given to the the
input layer whose size is found to be twice the number of output units, and the best prediction is thus
obtained.

§ 12 Number of neurons
& 1.1 Input | Hidden Output
T 6 3
0.239

__?, 1.0 A i3
£ os} B | 14 13 7 | oam
z

08 c 28 13 14 0.454

0 10 20 30 40
Day

Fig. 5. Prediction errors for three different network sizes.

Figure 5§ shows three numerical examples of prediction obtained by varying the number of input and
output units, Here, the number of hidden units, 13, is determined by applying the AIC procedure
[3]. In the left figure, x, divided by the moving average is shown as a function of 7 (day). Itis clear
that the optimal size (Case B) determined from the fractal dimension gives the minimum prediction
SFTOT as expected.

I-586

4. Application to Economic Index Prediction

While the optimal size of the hidden layer is determined by the AIC method, the optimal sizes of
input and output layers are given by the fractal dimensions of the time-series data. In this section,
some numerical examples are given for seeing the effectiveness of the proposed optimization
procedure. Time-series data is sampled from an economic index (Nikkei average), and the deviation
from its moving average is shown in Fig. 6. The fractal dimension is found to be D=1.57 within
1<£<10. In simulation, therefore, the sizes of input, hidden, and output layers are taken to be 20, 8,
and 10 in the learning phase, respectively. The number of back-propagation learning steps is 5,000
using 20 training sequences, and the learning coefficient is 0.5 without the momentum term.

Among 32 cases of prediction, there were good predictions 19 times using the present optimized
feed-back neural network. That is, the prediction rate was 59%. Figure 6 shows 7 numerical
examples of prediction. In this figure, the bold curves are predicted sequences, while the real
sequential data are represented by the solid curve. Most predicted sequences follow the real data with
only small errors. A satisfactory result is thus obtained.

3000 T T T T I I
2000

1000

Stock price deviation (Yen)

-1000 Prediction 6 N
Prediction 5 Prediction ‘)
-2000 - —
-3000 i 1 [| 1 | A
10 20 30 40 50 60

Day
Fig. 6. Examples of prediction using an economical index sampled from the Nikkei average.

5. Evaluation of Reliability in Prediction

Now that the optimization procedure is established for time-series data. From the above discussions
and the simulation results, it seems that the prediction rate depends strongly on the fractal dimension
of the time series data. If a relationship between the prediction rate and the fractal dimension exists,
reliability in prediction can be evaluated before predicting. Since no theoretical consideration is given
right now, we have determined this relationship empirically. Each predicted sequence is categorized
into 5 patterns according to its behavior as shown in Fig. 7.

Using several items of time-series data sampled from economic indices and natural phenomena, this
relationship is found to be an approximately linear function of the fractal dimension as shown in Fig.
7. The lowest prediction rate is clearly 20% since an arbitrary single pattern randomly selected from
five kinds of patterns is 1/5. This figure indicates that when the time-series data varies in a
complicated manner, the corresponding prediction rate is low because of a high fractal dimension.

1-587

On the other hand, a low fractal dimension gives a high prediction rate since the time-series data
varies in a rather smooth fashion.

When we predict the sequential data whose behavior is shown in Fig. 6, the prediction rate obtained
is 59%. Considering that the fractal dimension of this time-series data is 1.57, the corresponding
estimated prediction rate is 54.4% from the empirical relationship. This value should be compared to
the 59% rate.

100 1]]]
| 100-80(D-1) i Variations
80 (5 patterns)
9 _
; 60 I- Ap :’0- -
£ . ° A N
o
:% 0la Exchang.e rate o '._
-§ ® Stock price A G 4
& = TOPIX ® &
@ Nikkei average A ~a
2o Temperature
A Wind velocity /
20%(=1/5
0 1 1 1 i
1.0 1.2 14 1.6 1.8 20
Fractal dimension D

Fig. 7. Prediction rate as a function of the fractal dimension.

6. Summary
To summarize, fractal dimensions of time-series data were used to optimize neural networks. The
fractal dimensions were also used to determine the number of input and output units. This method
together with the AIC procedure to determine the number of hidden units is useful for optimizing a
neural network for time-serics data. Moreover, a relationship between a prediction rate and a fractal
dimension was obtained empirically.

References

[1]1. Matsuba, "Neural sequential associator and its application to stock price prediction,"
IECON'91, Kobe, Japan, October, pp. 1476-1479, 1991,

[2] I. Matsuba, "Application of neural sequential associator to long-term stock price prediction,”
IJCNN'91, Singapore, November, pp. 1196-1202, 1991.

[3] 1. Matsuba, "Feature detection by back-propagation,” Suri-Kagaku (in Japanese), No. 338, pp.
31-37, 1991.

{4] T. Higuchi, "Approach to an irregular time series on the basis of the fractal theory," Physica D,
vol. 31, pp. 277-283, 1988.

I-588

Analysis of a Learning Algorithm for Neural Network Classifiers

Zhen-Ping Lo, Yaoqi Yu, and Behnam Bavarian
Department of Electrical and Computer Engineering
' University of California, Irvine
Irvine, CA 92717

Abstract

In this paper we provide a convergence analysis of a learning rule which we derived for the
adaptation of the neurons’ synaptic weight vectors representing the prototype vectors of the class
distribution in a classifier. The analysis also provides a theoretical foundation for the Kohonen
learning vector quantization (LVQ1 and LVQ2) algorithms. The convergence of the learning
rules are proved under certain conditions. More specifically, We show that the algorithm will
converge to error free solution when the input patterns are linearly separable.

1 Introduction

In a previous paper(1], we derived three learning rules using the gradient decent method to adjust
the decision surface to minimize the classification error. These learning rules resemble the LVQ2
algorithm. The reason why using the LVQ2 algorithm is better than the LVQI1 algorithm in the
classifier design was also analyzed.

In this paper, convergence of the learning rules will be analyzed. The three learning rules
generally will converge to the same results. Thus, we will only discuss one of them here. We will
choose the case in which the weight vector is modified whenever a sample is misclassified.

The learning rule is given by

my(k + 1) = my(k) - a(xz' - my(k)) (1)

or

m;(k + 1) = my(k) + a(x;' — my(k)) (2)

When input x belongs to class 2 but is misclassified as class 1, and m; is fixed. Eq.(1) intuitively

tells us to adjust the decision surface by adaptively moving m; farther from the misclassified vector

x. When input x belongs to class 1 but is misclassified as class 2, and m; is fixed, Eq.(2) intuitively

tells us to adjust the decision surface by adaptively moving m, closer to the misclassified vector x.
The case 1 learning rule of Eq.(1) and (2) can be rewritten as

my(k + 1) = my(k) + a1 Ni(x(k) — my(k)) (3)

where
-1 if X(k) € C](k’)nCQ
Ni = Ni(x(k),my(k)):={ 1 ifx(k) € ca(k) Ny
0 otherwise

where x(k) € ¢;(k) N ¢; means that x(k) is from class ¢; but misclassified as ¢;.
We will assume that the learning gain oy satisfies the following conditions:

0-7803-0559-0/92 $3.00 © 1992 IEEE 1-589

2 The Convergence of the Learning Rules

First let’s consider the 1-dimensional case.

Theorem 1 If the prototype vectors are initially labeled correctly (m;(0) € c;), then the learning

rule of Eq.(3) converges to some limit.

Proof: For convenience, we assume a; < 1 for all k. Let a be one of the decision surfaces and
my(0) < a and my > a. Without loss of generality, we can assume a = 0, then z € ¢; <=z < 0,

T €y <=>122>0. Set

._ mi(k) + m;
Oy := — —
then k
zecl(k)ﬁ:l:(il—(—-)z—*-—-ﬂ:h
and k
xECg(k)@zZm—l(—%ﬂ}-=0k,
and Eq.(3) becomes
k
Ok41 = Ok + ax41 1\’1:(1;-(--)2i7-n-Z ~ 0x)

where
-1 if0<z(k)< b, 0 #0
Ne=<1 if 0> z(k) > 6;
0, otherwise

and m, is a fixed constant.
The following properties are held for k& > 1.
(i) mi(k) < 0.
(i) Ok41 > 0k = 0k < 0 and Ox41 < O) = 6 > 0.
(1ii) Ok < 0 = Or41 > O; and O > 0 = Oy < 6.
(iv) Ky, >mo > 0, > ml(k) > —K,, where K3 = mp + |m1(0)|
The proof of these properties is in [3):
Note that the proof of (ii) and (iii) shows us

(z(k) = my(k)) 20, if Ne#0 -

and from (iv) and the definition of N, it follows that

[Nk(2(k) = ma(k))| < [Niz(k)| + |ma(k)| < [8k] + [ma (k)| < 2K,

To prove the theorem, it suffices to prove that either

(A) algorithm of Eq.(3) stops at 8,,, for some finite ng; i.e. O = 0y, for k > ng, or

(B) 6 - 0ask — +o0

1-590

(4)

(8)

(6)

Suppose that (A) is not true, then 8, # 0 for all n, otherwise if 8,, = 0 for some ng, then
Ny, =0and 0,41 <= 0,---, hence 8, = 0,, = 0 for n > ng.
Set

To=0, Tnyr =inf{k > T, : 07,0, <0} or T,y = +oo, if {-}is empty set.

Note that Ni has the same sign for &k = T, To, + 1, ---, Tpyy — 1, and 0p,,---,0r,,, is
monotonous. Therefore from Eq.(4) and (5) and condition (iv), it follows that

© Tugr~1

2K22 (01, - O0rl 2) aisa(2(5) - ma(5))

l‘=Tn
From properties (ii) and (jii), it follows that if 81, < 0, then
OT. S 01'.1-] S i S 01'..4.1—1 <0 S oTul

and if 61, > 0, then
'T. 2 .T-+l 202 'T...'.g—l >02> oTn\}]'

i Tp4s = +00, then
o0
2K; 2) @iza(z(i) — my(i))
1=Tn

and From Eq.(4), -
t-1

0 =0, + N Y aipi(2(i) - m(i)),

=T
where N = 1 or -1 is a constant. Thus, #; converges, and (z(k) — my(k)) — O because of
Y2141 = +00. If N = 1, and 0 > (k) > 6, then z(k) ~ my(k) > P28 > mz pence
0 > 52. This is impossible. f N = —1, and 0 < z(k) < 6;, then 6; is decreasing, so is m,(k). But
my(k) < 0 < z(k). This contradicts to the fact (z(k) — m;(k)) — 0. Therefore, T4y < +00 for all
n. Taking Eq.(4) and (6) into account, we obtain

Z(Tap1 - 1)+ m

lh’«l' < wTun - OT--n—ll = aTun(Tas1 2) 2 -
Finally, since each 6; lies in between 67, and 01, ,, for some n. We conclude that §; — 0 as
k — 400. Hence m;(k) has a limit as k — +00.

01,.1-1) < 2Kza7,,, —+ 0 as n— 400

Corollary 1 If there ezist two decision surfaces ay # a;, then case (A) must happen. In the special.
case of a finite number of training patterns the algorithm will stop after some finite steps. L

Note that the above proof holds for both a; and a;. If (A) doesn’t happen, then 6, — a; and
0 — a; simultaneously, which is impossible. Therefore (A) must happen. :
In order to prove the two-dimensional case, we need the following two assumptions:
Assumption I: Classes ¢, and c; are strictly linear separable; i.e. there exist two parallel straight
lines such that class c; falls on one side of these two lines and class ¢; falls on the other side.
Assumption II: Classes ¢; and c; are bounded in a square region A : [-M, M) x [-M, M),
where M > 0.
Note that under Assumption I there exists at least one decision surface. Hence the y-axis can
be chosen to be the one among them such that for each training element x = (z,, z,),

z) >0 or 7y < —¢ for some fixed positive ¢

1-591

and the x-axis can be chosen passing the point my = (m2;,0) where M > my; > 0, which is the
fixed prototype vector for class c;. The initial value m;(0) of the prototype vector for class ¢; is
always chosen with properties — M < m;,(0) < —¢g and |[m13(0)] < M. Then it is easy to see that

XE€Eg<=11<0, X€Ec&>1;20

m3 + m;(k)

X € ¢; <= A(k) := (my — my (k)T (x - 5)<0
X € ca(k) <= A(k) 20
and
Ni=+4+1<2,<0 and A(k)20, (D
Ny=-1&=2z;>0 and A(k)<0. (8)

Lemma 1 Under Assumption I, my (k) < —¢g, for all k.
Lemma 2 Under Assumption II, jmy;(k)] < 10M, for allk,i=1, 2.
Due to Lemmas 1 and 2, our algorithm becomes
my (k + 1) = my(k) + ar41 Ne(x(k) — my(k))

my(k) € D := {(w, w2): —-10M < w < ;(o, jwa| < 10M}. Now we are going to prove the
following theorem ~

Theorem 2 Under Assumption I and I, Algorithm (3) either

(i) stops at m(ko) for some finite ko, i.e. my(k) = my(ko), k > ko, or
(i) converges to some poini.

Proof: Suppose that (i) is not true, then N # 0 for an infinite number of k. Without loss of
generality, we assume that N; # 0 for all k, hence from (7) and (8), it follows that

P({z1(k) 2 0,A(k) < 0} U {z1(k) < 0,A(k) 2 0}) > 0 Vk (9)

Considering the inputs x(k), k = 0, 1, --- are i.i.d random variables. Algorithm (3) is the
so-called Robbins-Monro with

H(my(k), x(k)) = Ni(x(k) — mmy (k)).

Since for any positive Borel function g

Elg(ma(k), x(}DIF] = [g(ma(k), x)pim,cey(dx)

where p,(dx) = p(z1, z2)dx is independent of w, p(z;, z;) is the mixed density of classes ¢; and ¢
and Fi = o{my(0), ---, mn(k),x(0), ---, x(k— 1)}4].
We introduce the so-called Lyapunov function as follows:

w} + (w1 + myy)?
U(w): 2 (-2“‘)1 21)

20, weD

U(w)=08 w=w":=(-mg,0)

1-592

A7

-

»

~1 4 4inh
U’(UJ)': (2 -&2(01

wi

)

., _wz+mz %})
U (w)= 1
(w) (g B wi,

Using a Taylor expansion of order 2, we obtain:

U(my(k +1)) = U(my(k)) + ar1[U (my (K))T H (my (), x(k)) + ri

where

e = adyy BT (ma (), x(K))U"@)H (my(K), x(k)), @ € [ma(k), ma(k + 1)

First, we verify the condition

where

D(c)::{w:cSlw—w'lS%,we D} for €>0,

and

sup U'(w)Th(w) <0

w€D(¢)

hw) = E[H (0] = [B x)uldx)

Note that

E[H(w,x)]

+

//Nk(w,x)(x — w)p(zy1,z2)dz dz,

/ d:rl/ (x — w)p(z1,z2)dz2

;<0 A>0

/ dz,/ (w— x)p(z1,22)dz,
£1>0 A<O

where A = (my — w)T(x — 221«). We need to prove

U'w)T(x-—w)<0 as 2, <0 A>0

U'w)T(w-x))<0 as 2, >0 A<0

Ifz; >0, A= (mzx - wl)-’t] - WeT2 —

U'w)T(w-x) = (°%+_

_w}+(my —wy)?

2 2.

wi + m¥,
2
2wy

s}

Similarly, if z; < 0, A > 0, we obtain

U,(W)T(X -w)= wi + (ma1 —wy)?

Hence (11) holds because of (9).

)
2wy

1-593

Ywy - 1) + g%(xz — W)

z — A < 0 (since w; < 0)
wi

1+ — <0
W

(10)

(11)

Next we will verify the condition
E[irel|Fi] < Cagya (1 + U(my(k))) (12)
The left hand side of (12) equals to

E[reliFe] = afy E[INZ(x(k) — my(k))TU" (@)(x(k) — m(k))||Fi]
Cai+1

IA

for some positive C, since & € D, vy, my3(k) are bounded from 0 and m;(k), x(k) are bounded..

By the Assumptions I, II and lemma 1 and 2, we obtain
E[irellFx] < af1,C(1 + U(my(k)))
‘Now from (10), (11) and (12), U(m;(k)), k =1,2,---, satisfies
E[U(my(k + D))IFi] = (1 + o}, CY (my(k)) + Cagyy + U'(ma (k) h(my(k))

By the same discussion in p.345 section 5.2.2 in [4], we conclude that algorithm (3) converges to

w‘

Corollary 2 Under Assumptions I and I, algorithm (8) must stop at some finite steps.

Corollary 3 If there are a finite number of training elements, then algorithm (8) must stop at
some finite step. :

3 Conclusion

In this paper, the convergence of the learning rules for pattern classification under some conditions
is analyzed for a finite number of training samples to a fixed point. This has also provided the
mathematical basis for the analysis of the Kohonen learning vector quantization algorithms.

References

(1] Z.-P. Lo, Y. Q. Yu, and B. Bavarian , “Derivation of Learning Vector Quantization Algo-
rithms,” Submitted to IJJCNN, 1992.

[2] T. Kohonen, G. Barna and R. Chrisley, “Statistical Pattern Recognition with Neural Networks:
Benchmarking Studies,” Proc. of the IJCNN, vol.1 pp. 182-185 July, 1988.

[3] Z.-P. Lo, Y. Q. Yu, and B. Bavarian, “Analysis of a Learning Algorithm for Neural Network
Classifiers,” Submitted to IEEE Trens. on Neural Networks, 1992.

[4] A. Benveniste, M. Melivier, and P. Priouret, Adaptive Algorithms and Stochastic Approzima-
tions, Springer-Verlag, Berlin Heidelberg, New York, 1990.

1-594

Y

IMPROVING THE PERFORMANCE OF
PROBABILISTIC NEURAL NETWORKS

M. T. Musavi, K. Kalantri, and W. Ahmed
Eledirical and Computer Engineering
University of Maine
Orono, Maine 04469
musavi@watson.cece.maine.edu

Abstract

- This paper presents a methodology for selection of appropriate widths or covariance matrices of the
Gaussian functions in implementation of PNN classifiers. The Gram-Schmidt orthogonalization
process is employed to find these matrices. It has been shown that the proposed technique
improves the generalization ability of the PNN classifiers over the standard approach. The result
can be applied to other Gaussian based classifiers such as the radial basis functions (RBF).

1. Introduction

The probabilistic neural network (PNN) classifiers have proven to be more time efficient
than the conventional back-propagation (BP) type networks. The main idea is to use the Baysian
decision rule to separate decision regions in a multi-dimensional input space. The rule is based on
the minimization of the "expected risk" of misclassification. Specht in his earlier work (Specht,
1967) used a kernel estimator to estimate the input density function of the problem under
consideration. He then used this estimator and the Bayesian rule to design a classifier that was
later named probabilistic neural network (PNN) (Specht, 1990a; Specht 1990b). The significant
advantage of the PNN classifier is its speed and training process. First, the training process is
one-pass and without any iteration for weight adaptation, hence, yielding great processing speed as
compared to back propagation (BP) or similar techniques (Specht & Shapiro, 1991). Second, the
network generalizes to the new incoming patterns without having to repeat the training process.
These characteristics are ideal for real time applications (Maloney, 1988; Maloney & Specht, 1989;
Washburne , Okamura, Specht & Fisher, 1991). ,

An important issue that has not been given enough attention is the selection of an optimal
"smoothing parameter” in the PNN classifiers. Smoothing parameter is the width or the covariance
matrix of the Gaussian kernel function in the PNN classifier. The PNN decision boundary varies
from a hyperplane to a very nonlinear boundary when the smoothing parameter varies from 0 to eo,
Specht indicates that the classification rates is not sensitive to this parameter. In our experiments
with the PNN it has been observed that the choice of smoothing parameter can, in fact, have
significant effect on the network outcome. This is especially evident in the statistical problems
with relatively close patterns of opposite class. More over, it has been also experienced that the

0-7803-0559-0/92 $3.00 © 1992 IREE 1-595

PNN will computationally fail to yield a solution when a small smoothing parameter is selected.

In view of the former deductions we offer an approach to improve the generalization ability
of PNN classifiers by selecting many covariance matrices, with ellipsoid constant potential surface
(CPS), as opposed to only one. The weighted probabilistic neural network (WPNN) (Montana,
1991) also offers a similar treatment of the issue but it falls short in providing a reliable approach
for finding the eigenvalues of the covariance matrices. In our approach, however, the eigenvalues
are found by the Gram-Schmidt orthogonalization process. The approach has been tested with
different problems and improvements have been reported.

2. The Proposed Methodoiogy

The underlying theory in the PNN classifier is to estimate the density of the input space
from the given observations by linear combination of a set of local functions. For example in a
two class problem the densities are found by:

T .
=1 3 (x-ci) (12)
i=1
1 I bi
00 =7 2, @, (e (15

where _C_ai and _c_bi are the training data points from class A and B respectively, @.(.) is the kernel

function at the i-th node and T is the total number of training patterns. The training in PNN is
therefore that of finding a set of appropriate kemnel functions and their parameters. The
classification is based on the Bayes rule. To sirlify the matters Specht has made the following
three assumptions

i) All kernels are the same

@, (Ix-c™) = @, (lix-c") = D (lx-c'M). for i=1,2, ., T (2a)
ii) The kernel is Gaussian,
® ix-¢) = o™ 121 exp [- 5 (217 - D1 (2b)

M is dimension of the input space and X is the covariance matrix.
iii) And that the covariance matrix X is diagonal and has equal eigenvalues (£=01),
:)
@ (x-cll) =@ryM? 6 M exp - -1, (20)

o

Using the above assumptions the problem of finding kernel functions is simply reduced to
selecting the parameter © that is referred to as smoothing parameter. This parameter is normally

found by try and error. It is necessary that the kernel functions preserve the local properties of the

1-596

L
~

A
r 4

input space. The above assumptions will not satisfy this condition. Therefore, the PNN classifier
will not be able to achieve its optimal performance.

So, let’s start with our technique and consider the general case and disregard all the above-
mentioned assumptions. In that, the kernels are still Gaussian but every one of them can take a
different covariance matrix. The Gaussian kernel placed at ¢'is then indicated by:

®, (gl =y 121 exp [3 - T (2] - 6. &)

Our goal is to estimate the covariance matrix in such a way to minimize the overlapping of the
nearest neighbors of different classes to preserve local properties, as well as maximize the
generalization ability of the network. In general, the contour or the constant potential surface
(CPS) of the Gaussian function is an ellipsoid in a multi-dimensional space. The actual CPS is
controlled by %.. Therefore, the generalization of the classifier is determined by Z.. In order to
obtain good generalization, the eigenvalues of the covariance matrix of each Gaussian should be as
large as possible. While there is no problem if two functions belonging to the same class overlap
each other, functions of different classes have to be separated to avoid any significant overlapping.
So, the function is constrained by the locations of the nearest training patterns of the other class.
Now, let's decompose the i-th covariance matrix as,

Z= QiAiQiT “)
where eigenvalues and eigenvectors are respectively the diagonal entries of Ai and the columns of
Qi' Since Ei is symmetric, all eigenvalues and their corresponding eigenvectors are real. The
eigenvectors are the principal axes of the ellipsoid of the CPS and the square roots of eigenvalues
define the lengths of the ellipsoid along these principal axes. To find the principal axes andmhe

lengths along the axes for the CPS ellipsoid the Gram-Schmidt orthogonalization proceduré’is
utilized. The j-th elgenvaluc of the i-th covariance matrix can be found by (Musavi, 1991):

i
II'Ql 02

A= &)
! 4r
Where Ilhijll is the length of the j-th axis of the i-th CPS ellipsoid and r is a measure related to the

overlapping of the local functions. Once eigenvalues and eigenvectors are known the kernels can
be found.

3. Test Results

To show the effect of the proposed technique on the generalization ability of the PNN
classifiers we have conducted different tests. These tests are separated into two different

1-597

categories. In the first category the standard approach is used and in the second category our
proposed approach is applied.

Two test problems with two (2-d) and eight (8-d) input dimensions have been generated by
Gaussian random vectors. Without loss of generality it has been assumed that there are only two
classes in each problem. In the 2-d problem the first class has zero mean random vectors with
identity covariance matrix and the second class has mean vector [1 2] and diagonal covariance
matrix with 0.01 and 4.0 entries. The distribution of training samples for the 2-d problem is given
in Figure 1. The first class patterns have been indicated by "x" and the second class by dots ".".
The patterns of the 8-d problem are Gaussian random vectors with equal mean vectors and identity
(I and four-identity (4I) covariance matrices.

Note that for any Gaussian distribution the optimal classifier is known to be a quadratic
classifier given by:
1 Trg 7-1 1 Ty -1 1, B clesl
3&-m)) G-m)-5&-m)] & m)+ym—L s 0 ©)
2 class2
where m, is the mean vector of class i and Zi is the covariance matrix of class i. Applying (6) the

optimal error rates for 10,000 samples of 2-d and 8-d problems were found to be 6% and 9%
respectively. These optimal values will be compared with the results of our experiments.

For the first category of tests we selected 100, 150, 200, 250, and 300 training patterns
along with 10,000 test patterns of each problem. As described by (2), the standard practice is to
select o by try and error. Therefore, we allowed © to vary within an specified range. For any
given number of training patterns we then trained the networks for different o's and tested the
networks with the given 10,000 test patterns. Figures 2a-b indicate the error rates of the PNN
network for the 2-d and 8-d problems using the standard approach. Note that the error rate is
sensitive to variations in o, especially in the 2-d problem.

In the second category we used the proposed methodology to find the covariance matrices
of the Gaussian functions as opposed to the standard approach. The best error rates of the
standard approach were selected from Figures 2a-b and plotted against those of our approach. The
results are shown in Figures 3a-b. Note that in all cases the proposed methodology for selecting
appropriate covariance matrices gives better error rates than the standard approach. This is
especially evident in the 8-d problem. The generalization of the enhanced PNN trained with low
number of training samples is as good as or better than that of the standard PNN with high number
of samples. For example, in the 8-d problem the best error rate of standard PNN for 300 training
points was 25.69% while that of enhanced PNN with only 100 training points was 20.39%.

1-598

7

