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J.H. Hendry -

Mathematical aspects of colony growth, transplantation

kinetics and cell survival

COLONY GROWTH

Definitions

The ability of cells to divide repeatedly has long been
considered to be the most important parameter to be
quantitated in renewing tissues exposed to cytotoxic
agents. Cells with-this ability are commonly called viable
cells. (It should be noted that this term is also sometimes
used to describe whether a cell is morphologically and
often functionally intact.) When radiation is the cyto-
toxic agent, the major expression of injury is the reduc-
tion in viability i.e. the proportion of cells which retains
reproductive integrity or the surviving fraction of cells ac-
cording to this criterion.

When cells divide repeatedly and form discrete iso-
lated groups of progeny, these groups are called colonies.
In cases where colonies have been shown to arise from
divisions of a single parental cell, for example, by
radiation-induced chromosomal markers in the case of
spleen colonies (Becker et al, 1963), the originator of a
colony should be called a clonogenic cell (clonogen) or
colony-forming cell (CFC). The cells in the clone would be
genetically identical, although they may have differen-
tiated and be phenotypically different. When colonies
contain several cell types of unknown origin, the orig-
inators should be called a colony-forming unit (CFU).

Many authors use the term clonogenic cell or a similar
connotation, e.g. microcolony-forming cell, in situations
where clonality has not been demonstrated but is in-
ferred, for example by agreement with mathematical
predictions of single cell responses e.g.-exponential sur-
vival or transplantation kinetics. However, there- are
some examples in vitro of a curvilinear relationship be-
tween the number of cells plated and the number of col-
onies produced (see Xu et al, 1983 and Ch 3), and of
an unexpected similar relationship in vivo between the
number of cells injected and the number of tumours
produced (Porter et al, 1973). In such situations more
colonies are produced than would be expected from the
higher number of cells seeded, and cell-cooperation, a
density-dependent effect of helper cells or factors, or an
immune mechanism in vivo acting preferentially on sin-
gle cells rather than on cells in groups, can be invoked.

Furthermore, exponential survival data, although pre-
dicted from single-cell considerations, cannot in some
instances exclude the necessity of several cells for sur-
vival (discussed further below). Hence the term CFU
(or micro-CFU), which can embody these effects, is
preferable in these cases to the term clonogenic cell.
When colonies arise from single cells, and in the sim-
plest case where all the daughter cells are also capable
of division, the number of cells in the colony will in-
crease from 1 to 2, 4, 8, 16, 32 etc. This is exponential
growth, and after ‘n’ divisions, there will be 27T cells in
the colony. If the time between divisions is constant (the
cell cycle time, Tc¢), then after time T there will have
been (T/T¢) divisions. Hence after time T there will be
20779 cells in the colony. For example, if Tc is 12 hours,

. then after 7 days (a common assay time in vitro) the

colonies should contain 2! or 16 000 cells. If there is an
initial lag of ‘one cycle time before growth commences
at this rate, the final number of cells would be less by
a factor of 2, and if 2 cycles, by a factor of 4. Other
combinations can be calculated similarly. Colonies of
1000 cells are often grown and counted in assays in
vitro, but in assays in vive the number of cells per col-
ony can vary markedly, e.g. about 10° for spleen-col-
onies (Ch. 2) and about 50 cells for liver follicles in fat
pads (Ch. 16). Colonies are defined generally as those
containing more than 50 cells. Those containing less
than 50 cells are sometimes called small colonies or clus-
ters. The number 50 is relatively arbitrary, but it in-
dicates that cells have undergone more than § divisions.
It is common experience that most cells capable of
undergoing 5 divisions are capable of many more, so
that these can be classified as the true survivors.

Self-renewal versus differentiation of clonogenic
cells .

Most colonies of normal cells differentiate into one or
more lineages of maturing cells, -and the presence of
mature non-dividing cells will lead to a slowing of colony
growth in terms of total cell number. This may also
occur to some extent if the maturing dividing cells have
longer cycle times than their precursors. Small colonies
or clusters can arise from maturing cells which still pos-

‘ 1



2 CELL CLONES: MANUAL OF MAMMALIAN CELL TECHNIQUES

sess a limited division potential, e.g. BFU-E (Ch. 3).
However, these will be temporary, disappearing at the
end of the life-span of the mature cells, as the colony
will contain no further progenitor cells. Larger colonies
can originate from stem cells, defined as those cells
which can renew themselves as well as differentiate into
all types of maturing progeny characteristic of that cell
hierarchy. The content of stem cells at any time can be
calculated in some situations, as follows.

When a stem cell divides it could give rise on average
to ‘2p’ stem cells and 2(1-p) differentiating cells, where
p is the self-renewal probability (Till et al, 1964). If p
is constant throughout colony growth, the total number
of stem cells after n divisions would be (2p)*. Clearly,
if p = 1 there is only self-renewal and no differen-
tiation, and if p = 0.5 the number of stem cells will
remain constant. The latter is analogous to the steady-
state situation in vivo, where cell production balances
cell loss. As the total number of cells after n divisions
will be (2)" if all the differentiating cells are dividing,
then the fraction of cells which are stem cells after n
divisions will be (2p)/(2)" = (p)". Also, after time T,
the number of stem cells present will be (2p)T7<, where
Tc is the cell cycle time, and the time for the stem cells
to double in number, the doubling time (TD), will be

1n(2) )
Te fnip) .
ability of differentiation at each cycle, the stem cell popu-
lation will grow more slowly than the total cell number,
which is doubling at a rate given directly by Te¢. In the
later stages of colony growth the maturing cells may well
have longer cycle times, or emigrate from the colony,
and hence the fraction of total cells which is stem cells
could be higher than predicted. The above consider-
ations are based on a constant value of Tc among stem
cells. If there is a distribution of cycles times, which is
likely, then the number of stem cells present at any time
(T) will be different from the simple relationship above.
An example of this effect, which is probably the other
extreme but which is amenable to calculation, is where
there is an exponential distribution of cycle times. In
this case the average number of stem cells (M) present
at any time (T) is given by:

- 1L
InM = [0.693.2p-1). ]

(Schofield et al, 1980).
The degree of spread of the stem-cell content between
colonies depends on the vatue of p. This has been dis-
cussed with reference to spleen colonies and can be ex-

pressed mathematically as:

p (220 1
Voo tM

(Vogel et al, 1968, 1969), where V = coefficient of vari-
ation of CFU-S per colony = standard deviation/mean
CFU-S per colony; p = probability of self-renewal; M =

. Hence, if there is a fixed average prob-

mean CFU-S per colony. Hence p can be measured when
the distribution of stem cells among colonies can be
assessed. Values of p for normal CFU-S range between
about 0.62 (Vogel et al, 1968) and 0.68 (Schofield et al,
1980). As the doubling time of CFU-S in spleen colonies
is about 20 hours, a value for p of 0.65 would give Tc =
7.5 hours.

The number of CFU-S per colony can be changed by
vatious cytotoxic treatments to the original graft, e.g.
after IMS (Schofield & Lajtha, 1973). The reduced con-
tent of CFU-S in colonies of a given age is commonly
used as a measure of an induced qualitative defect in the
surviving stem-cell population, e.g. Botnick et al (1981).
‘However, this should not be interpreted automatically
in terms of a reduction in the value of p, because if this
were 50, the doubling time of CFU-S in the colony
would change assuming that the cycle time is un- "
changed. Most examples where this has been measured
show a similar rate of growth of the CFU-S population,
but the growth curve is shifted in time due to a lag or
some other mechanism (Schofield & Lajtha, 1983).

A parameter related to p is the extinction probability
‘o’ (Vogel et al, 1968, 1969). If p is constant throughout
colony growth, then a fraction (1-p) of stem cells will
differentiate at the first division and will not form a col-
ony. A similar fraction should differentiate at the second
and subsequent divisions, and this effect will reduce the
initial number of CFC which finally produce colonies.
The probability of ‘extinction’ reaches an asymiptotic
‘'value of [(1-p)/p] after about 5 generations (Vogel et al,
1968), and this is about 0.63 for normal CFU-S. Thus,
only (l-w) = 37 per cent of CFC would produce col-
onies, and hence the expected number of potential
CFC would be greater than the measured number of CFC
by a factor (1/0.37) = 2.7.

These techniques have not yet been applied to other
colony assays, but the advent of grafting techniques for
producing colonies derived from cells in other tissues
makes their application possible.

In contrast, a celk loss factor (8) was introduced for
the growth of tumours (Steel, 1968). This is the rate of
cell loss i.e. cells lost per unit time expressed as a frac-
tion of the rate of cell production. If cell ‘loss’ is taken
to denote solely loss of self-renewal ability, then 8§ =
{(1-p)/p}], which is the same expression as for ». How-
ever, cell ‘loss’ in tumours refers to the physical removal
of cells, not solely their loss of self-renewal ability, A
discussion of ‘P’ in differentiating cell populations in
tumours can be found elsewhere (Mackillop et al, 1983).

SAMPLING TECHNIQUES

The Poisson distribution ,
All the-assays described in this book are based on tech-
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niques using estimated sar'nfuc sizes, When the total
number of cells (N) plated in virre or at risk in vivo can
be counted accurately, rather than estimated from a
count of a small gliquot, binomial statistics should be
applied as the surviving number ranges between N and
zero. When N is estimated from a random sample, i.e.
when aliquots of a suspension are plated out, Poisson
statistics can be used as an approximation because N
could range between zero and very .arge (almost infinite)
values. When the mean number of cells is small, the
Poisson distribution will be skew, as many of the counts
will be zero by chance. When the mean is large (above
about 10}, the distribution becomes more symmetrical
and tends towards a normal distribution.

The Poisson distribution is very common in radio-
biology, not only because of the sampling techniques
employed but also because of the random nature of depo-
sition of energy, and hence the production of biological
events, by radiation. The probability of any given count

m

—m n
can be calculated from: f = i3——"—— where m is the mean
n!

count, n is the count which occurs with probability f,
and n! = [n X (n-1) x (n-2) x.....x1]. Common exam-
ples of its applications are given below.

Intraceltular events (distribution of hits)
If cells receive on average 1 lethal hit, the fraction of
cells escaping i.e. not being hit, will be e ! = 0.37 or
37 per cent. Another fraction (e ' x 1'}/1 = e! = 37
per cent of cells will receive 1 fethal hit, (e-! x 12)/2
x 1) = (e7'y/2 = 18.5 per cent of cells will receive 2 hits,
and (e X 1’Y(3 x 2 x 1) = (¢'')/6 = 6 per cent will
receive 3 hits. With 2 lethal hits on average per cell, e
= 13.5 per cent of cells will escape, 27 per cent will
receive 1 hit, and 27 per cent will receive 2 hits, etc.
Clearly, the fraction of cells escaping ‘X’ lethal hits is
¢, and when x is linear with the dose delivered this
forms the basis of a simple exponenfial ‘survival curve
(see below).

Extracellular events (groups of cells)

In manv of the assays for survival, the clonogenic cells
are grouped into structures containing similar numbers
of these cells. After radiation there will be a distribution

of the number of surviving cells per structure which”

approximates to a Poisson distribution when the initial
number of clonogenic cells per structure is large and the
number of survivors is small, so that the range in num-
bers about the mean can be from zero to this large initial
value. When colonies can grow from | or more clono-
genic cells, the fraction of ablated structures (F), can be
used to calculate the corresponding mean number of
surviving clonogenic «ells per structure (m). F = ¢ =,
and hence m = —1InF. Values of m can be plotted on
the logarithmic scale of semi-log graph paper versus
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dose on the linear scale to give a conventional cell sur-
vival curve. However, this method can be used only ar
relatively high doses where the number of surviving cells
per structure has been reduced on average to near unity
or below so that some structures are ablated (see Chs §,
12, 17). If the standard error on F is f, then thé standard
error onm = §/F. Also, it should be recognised that the
number of surviving cells per surviving structure =
[m/1-F)] =[-1nF/(1-F)]. The validity of using these
calculations has been confirmed in two assays bv meas-
uring the distribution of colonies between different areas
of epidermis (Withers, 1967; Hendry, 1984) or intestine
(Ch. 3), where the distribution was not significantly dif-
ferent from a Poisson distribution.

Two related extensions of these principles are (1)
when the possibility is considered that one clonogenic
cell cannot form a coluny, and co-operation of two or
more is required, as noted in-Chapter 17, and (2) when
a larger number of clonogenic cells is required to rescue
a tissue or an animal, where each cell has a small but
finite probability of rescue. These effects are described
below in the section on cell survival curves and multi-
cellular structures.

Transplantation kinetics

Another similar and common situation is where colonies
arise from one or more CFU after injecting serially-
diluted inocula of a cell suzpension. This applies 10 assays
in fat pads (Chs 15, 16), and also to TDs, assays for w-
mours (Ch. 25). These are sampling techniques which
should be describable by Poisson statistics. In these
cases, the chance of no colony growing will be e ™,
where m is the mean number of CFU injected. Hence,
when 50 per cent of the injected sites show no growth,
e ™= 0.5 m = 0.693, and thus 0.693 viable CFU were
injected on average. When m = 1, e ™ = (.37, and
hence the inoculum size resulting in 37 per cent of sites
with no colony (TDq:) gives the plating efficiency di-
rectlv, 1.e. 1 CFU exists within a certain number of
cells. In practice, serial dilutions are made and injected
into different groups of animals to ‘bracket’ for example
the TDq.. Sophisticated statistical methods are now
commonly available for estimating the most likely value
of TDs or TD,: with their associated uncertainties.
These methods have been developed largely by Finney
(1964) and also by others for use in radiobiology (Porter
& Berry, 1963; Porter et al, 1973; Gilbert, 1974; Porter,
1980a,b).

Briefly, the probability (F) of lack of growth in an
injected site is given in. F = ¢ ™ (as above). m is pro-
portional to the inoculum size (z) so that m = kz, and:
Inm=1Ink+ Inz Asm = —InF, In(—In F)=1In
k + In z. Hence a plot of 1n{~ InF) against 1n z should
give a line with a slope of 1 and an intercept of In k or,
the ordinate, where k is the plating efficiency, i.e 1, -
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Also, k is given by the value of 1/z when F = l/e = °

0.37, t.e. at the TDga.

Estimuates of the parameters with associated error lim-
its can be made using computer programmes with maxi-
‘mum likelihood (Finney, 1964; Porter, 1980a, b) or
miniraum chi-square techmques (Gilbert, 1969, 1974).
We use a modified version of an earlier programme
(Gilbert, 1969), as noted elsewhere (Gilbert, 1974),

which calculates directly the plating efficiency with the

expected standard deviation (sometimes called the stan-
dard error) of the mean (Fisher & Hendry, unpub-
lished). Others who are using the above techniques
include Clifton & Gould (Ch..15), Jirtle & Michalopou-

los (Ch. 16), Hill (Ch. 25), Rice et al (1980) and Porter_: -

(1980a,b). New users are advised to contact one of the
current users and either send them the data for fiting
if their needs are only occasional or obtain a copy of
their computer programme if their respective computers
use the same language and format.

Porter et al (1973) also discussed the case where the
sigmoid curve is not in accordance with single-cell trans-
plantation kinetics, i.e. when the number of clonogens
in an inoculum is not reiated linearly to inoculum size.
In this case other fitting procedures can be used (see
Finney, 1964 and Ch. 25) which do not depend on any
biolo,cal model. However, the effect can be accom-
modated in the fitting procedure by introducing another
parameter ‘s’, where m = k.z®. Values of s > 1 could be
explained by marked variability between recipients. Val-
ues of s<1 could result from 2 or more clonogenic cells
being required for colony growth, as follows.

If 2 or more clonogenic cells are required, then the
probability of there being no growth is the sum of the
probabilities of there being (1) no cells, and (2) 1 cell,
in the site, i.e. F = e™ + (m.e-m) = (1 + m)e-=. Hence
InF = [In (1 + m)]—m. An approximate value for ‘s’
can be deduced by approximating In(l + m) by

m?
(m—? ), when m is much less than 1.

in_z

3

Thus InF = -m’ =

2
and ln(-lnF)=ln0.5+21nm=ln—§- + 21nz

Hence, a plot of 1n(—1n F) against 1n z would give

~aslope of 2 i.e. s = 0.5. However, the approximation

" gives m' less than 0.02

is valid only for values of m less than about 0.2, which
, and which corresponds to less
than TD,. For the majority of data, ranging between
TDs (m’ = 0.05) and TDys {m’ = 3), s can be shown
by graphical means to approximate to about 0.65. Also,
il 3 clonogenic cells or more were required for growth,
s would be about 0.5 over the range TDs to TDss.
The above considerations provide a slope that is
steeper than expected from single cell transplantation
kinetics, as observed with some of the tumour data, but
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this invokes the peculiar situstion where 1 clonogenic
cell has zero probability of growth! Thus, either co-
operation between 2 cells (or 3 cells etc.) is essential for
growth, or single cells are selectively inactivated com-
pared with cells in pairs or in groups. This contrasts -

with the conventional situation described above, where ,‘

every viable cell has a finite probability of forming a col- .
ony or a tumour, but the colony-forming efficiency of
the injected cells i8 less than 1, due for example to the
low concentration of viable cells in the inoculum, to a
relative lack of helper cells or factors, or to the random
cytotoxic sction of enzymatic disaggregation procedures
and/or the immune system in the grafted host.

mammary epithelium and thyroid (Ch. 15) or liver
(Ch. 16) are produced in fat pads, values of s = 1 are~
good evidence for growth from a single cell rather than
simply an aggregation of the injected cells. The latter
situation would give s<1. Aggregation is considered to
be a problem.when large numbers of cells are injected,
but this can be avoided by usinggmultiple injection sites
(Ch. 16). The clonal origin of these colonies is discussed
in detail in Chapter 16. Values of s = | are compatible
with the results obtained for all the normal tissues tested
so far using this method (mammary CFU — Gould &
Clifton, 1977; thyroid CFU — De Mottet al, 1979; liver
CFU — Jirtle ¢t al, 1981) and some but not ali tumours
(Porter et al, 1973). Linearity is also observed for many
other CFU, which has been tasted directly by the re-
lationship between colony number and cells injected or
plated, e.g. spleeu colonies (Ch. 2) and other haemo-
poietic colonies (Ch. 3).

The expressions F = e-™ and m = kz are similar to
those invoked earlier by Lange and Gilbert (1963) to
describe the probability («) of a single neoblast repopu-
lating a planarian. Thus, the probability of a grafted
planarian dying (F) = (1—o)N when N neoblasts had
been grafted, and this was approzimated to exp(—aN).
Hence, o« corresponds to k, and N to z.

Sampling errors

A characteristic of the Poisson distribution is that the
mean M equals the variance which is the square of the
standard deviation (SD) i.e. M = (SD)2. The standard
deviation of the mean is commonly called the standard
error (SE) and SE = (SD/VN) where N is the number
of estimates of the mean.

Two common procedures in colony experiments are
(1) to calculate the number of counts required to reduce
the SE to a given percentage of the mean, for example
5 per cent or 10 per cent, (2) to test whether two means
are significantly different e.g. for a control and a treated
sample. With the first procedure, if the standard error
on the mean M is required to be 5 per cent, so that the
mean equals M + 0.05M, then:

With the normal tissue assays, where structuad¥af. -~



0.05M x V(N samples) = .SD =.VM (see above).
Hence, N = 1/ (0.0025M), and N can be calculated for
any value of M. If the mean is 10, as for example in the
spleen colony assay, 40 samples (spleens) should be
counted, i.e. a total of 400 colonies. If the mean is 100,
as in some assays ifi vitfo-and in vivo, e.g. crypts per
circumference (Ch. 5), only 4 samples need be counted
with a total of 400 colonies. If a standard error of 10 per
cent of the mean is acceptable, the calculated number
of samples can be reduced by a factor of 4. This could
mean that only 1 plate in vitfo was necessary, although
the majority of investigators would in any event use 2
or 3 to cover the possibility of infection or poor growth
in a single sample. It is considered that when few sam-
ples are counted, the error quoted should be at least the
sampling error and not simply the value calculated from
the few samples taken (Boag, 1975). This is because the
few samples could easily by chance be selected from a
narrow range in the distribution and hence appear to
have an associated error smaller than was representative.
Also, there may well be an additional variance to the
sampling error due to pipetting or injection inaccuracies,
or variations between recipients, e.g.- in mice or in
feeder layers in vitro.

For the second procedure, a t-test is commonly used
to test whether two means are significantly different. A
worked example is given in Mather (1964), and these
tests are usually included in computer software pack-
ages. The t-test applies when the data are approximately
normally distributed. For more than 2 groups, an analy-
sis of variance is used or the non-parametric equivalents
(Siegel, 1956). The Poisson distribution deviates from
the normal distribution for low values of the mean
(much less than 10), and hence the t-test is more ap-
propriate for distributions with higher mean values. If
the means are small then the data will be skewed (i.e.
non-normal) and either a chi-squared test should be un-
dertaken to compare the observed and the expected fre-
quencies, or the non-parametric equivalent to the
unpaired t-test should be used, i.e. the Mann-Whitney
U-test. The application of the t-test to colony counts has
been discussed by Blackett (1974) and Hazout & Val-
leron (1977) with special reference to the ‘thymidine
suicide’ technique where small or large differences in the
amount of cell kill are used as indicators of the cycling
status of the cell population in question {Ch. 2). Re-
lationships are given in Hazout &Valleron (1977) which
give the total number of colonies to be counted to give
various levels of significance to observed differences be-
tween 2 mean values. For example, they calculate that
2000 colonies should be counted for each mean value to
make a 10 per cent difference between mean values sig-
nificant (P<0.05) in 90 per cent of cases. 2000 colonies
corresponds to 200 spleens with 10 colonies per spleen,
or 200 mice with 10 intestinal crypts per circumference,

e . .
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or 20 plates in vitro with 100 colonies.per plate. If the
difference between the means is 40 per cent, the total
number of colonies can be reduced drastically from 2000
to 100.

The fraction of cells surviving is the ratio of the num-
ber of colonies in the treated sample to the number in
the control sample. If the ratio is (A/B) and the standard
errors on A and B are ‘a’ and ‘b’ respectively, then the

error on the ratio is given by: l; ,- V(@'B* + bAD).

CELL SURVIVAL CURVES

Parameters and models
As energy from ionising radiation is deposited at random
in discrete volumes, resulting generally in randomly-dis-
tributed biological injury, it is conventional to describe
radiation dose-response curves using an exponential
(Poisson) distribution. Hence, dose is plotted on a linear
scale and cell survival is plotted on a logarithmic scale
(see Fig. 1.1). A line on such a plot indicates that equal
increments of dose produce equal decrements in log cell
survival. If the line extrapolates to the origin, as for ex-
ample with human fibroblasts (Ch. 19), the relationship
between dose and survival can be described by one pa-
rameter, the mean lethal (or inactivation) dose Dj; or
D, (Lea, 1946). If the survival curve is truly exponen-
tial, this is the dose which reduces the number of viable
cells to 37 per cent of the original number. This value
was chosen because accordig- to the Poisson distri-
bution, when all cells have received on average 1 lethal hit
at random, ¢! (=0.37) should receive no hit i.e. 37 per
cent should survive. Because of the exponential nature
of the survival curve, this will apply at any level of sur-
vival fraction i.e. from 1 to 0.37 or from 0.1 to 0.037.
The term D, is preferred so as to cover the more gen-
eral case where, for most mammalian cells, there is a
shoulder or initial region demonstrating less sensitivity.
Hence, D, is the mean lethal dose describing the zer-
minal exponential region (see left panel, Fig. 1.1). If
there is a finite initial slope in the shoulder region this
is often described by ,D,. The size of the shoulder is
described most simply by the extrapolation number ‘n’
which is the point of extrapolation of the terminal ex-
ponential stope on the (log) ordinate. Hence, for many
of the survival curves presented in this volume as ex-
amples of the use of various assay techniques, compari-
sons can be made of cell sensitivity (D,) and of shoulder
size (n). Alternatively the quasi-threshold dose Dq can
be used (Alper et al, 1962), which is the point of ex-
trapolation of the terminal slope on the linear abscissa
(Fig. 1.1, left panel), and which equals (D,.1n n). It is
not the ttue threshold dose, and for cells demonstrating
a marked initial slope there may be a significant decrease
in survival at a dose Dq. Interestingly, with a multi-
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Fig. 1.1 Shapes of survival curves.

Left panel, conventional multi-target survival curve. n = extrapolation number; D, = mean lethal dose at low doses; Dq =

quasi-threshold dose = D,.1n n.

Middle panel, target-pair model. 2™ extrapolation number, with m pairs of targets;

doses = Dy; [Dy ] = meanlethal doseat low doses. For D, see text.
m

[ D;D,

—_——— lethal i
oD, + Dz)] mean lethal dose at high

Right panel, o § curve. Extrapolation number (2®), very high. 1/a = mean lethal dose at low doSes. Continuous curvature,

terminal exponentis] slope usually never reached.

target curve, Dq is the dose at which the linear decrease
in survival per unit dose is maximal (Okumura et al,
1974). '

Although assays for mammalian cell survival have
been developing over nearly 30 years, the mechanisms
responsible for values of n and D, have not yet been
elucidated. However, in the literature there is an -in-
creasing use of alternative mathematical models for cell
survival curves - which are based on various

" ‘plausible’mechanisms. These are often considered to be
‘better’ modelis but because of the amount of scatter in
most data, the newer models cannot usually be shown
to fit the data better when the number of variables is the
same as in the old models. As users of colony techniques
for dose-response measurements are becoming increas-
ingly confronted with descriptions of survival curve
shapes in terms other than D, and n, for example « and
B (Ch. 18), a brief description is given of the meaning
and use of such parameters.

All target-type models invoke the Poisson distribution
to give the probability of an event not happening, when
the mean number of events is specified. A simple case,
described above, is where one event kills the cell and

where the mean number of events per cell is linear with
dose (D) so that survi_va] (S) of the cell is given by:

S exp (-D/Dy)

If there are ‘n’ targets in a cell, 2ll of which have to be
inactivated to kill that cell, and if the number of inacti-
vating events is linear with increasing dose, then survival
of single rargets could also be described by [exp
(-D/D,)]. The chance of a single target being inactivated
is [1 - exp (-D/D,)], and the chance of inactivating all n
targets is {1 — exp (~ D/D,)]". Hence, cell survival (S) is
given by:

$ = 1-[1-exp (-D/D)I"
This is the conventional multi-target equation, which

equation (1)

equation (2)

approximates at high doses to [n. exp (-D/D,)]. A finite -

slope to the cell survival curve at lqw doses is often
characterised by an additional exponential term, so that:

§$ = exp (-D/Dy) % (1~ [1 - exp (-D/D,)]")
-equation. {3)

(Bender & Gooch, 1962), where ,D, is the mean lethal *

dose for the cell from single lethal events, and a different
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target 1s impiied irom the u targets already described. At
1 1

high doscs § becomes (n. exp [-D (5 + FD-
1o o

Equation (3) is adequate for empirical description and
comparative purposes, but its use for interpretation of
the parameters in terms of mechanisms is now not
favoured by many pecple. This is because of the con-
ceptual difficuities in the postulate of a multiplicity of
essential targets, e.g. Alper (1979).

A more plausible version of target-type models is
based on the assumption that only one target of many has
to be inactivat.d to sterilise the cell, e.g. one unrepaired
break in a double strand of DNA which leads to lethal
chromosomal injury. If such a break can be produced
by one radiation event with a probability « and by a
combination of two events with a probability f, then the
number of lethal events (1) can be expressed by a quad-
ratic function: L = aD + BD? Hence, the surviving
fraction (8) of cells will be given by: .
§ = exp (-L) = exp ~(aD + D?) equation (4)
e.g. Chadwick and Leenhouts (1973). This equation pre-
dicts a continuousiy-bending survival curve, and
although it can aiso accommodate curves which are
simple exponentials, in which case § = 0, it cannot
accommodate conventional muiti-target-type survival
curves which show quite clearly, the presence of a
shoulder and a terminal exponential region, e.g. Puck &
Marcus (1956). v

However, the muiti-target curve ind the «, g for-
mulation can be reconciled if the same mathematical
principles are applied to derive both. The relationship
between them can be demonstrated as follows.

If a potential target-pair is considered, the chance of
one strand of the pair not being broken would be given
by exp (~D/D,), where D, is the mean number broken
per unit dose. The chance of the pair remaining intact
would be (1— [1-exp(~D/D)]2). If there are ‘m’ po-
tential site-pairs in a cell, the chance of the cell surviving
is: § = (1-[-exp(~D/D2))™. If the pair can also be
inactivated by single events, another exponential factor
is added so that:

S = [exp(-D/D)J™ . (1 - [1 - exp(- D/D)})™

equation (5)
(Gilbert, 1975; Ehrenberg, 1977; Gilbert et at, 1980). At
high doses, S approximates to

1 LI
2™ . expl- mD (— 4+ ——
(2" expl- mb (5 + 5501
and hence the survival curve (see middle panel,
Fig. 1.1) has an extrapolation number of 2™ (Neary,

. N | 1 .1
1965) and a sensitivity (=), of m(—+-—). When m = 1,
W(Do) (D1 Dz) m
the equaton becomes a conventional multi-target

equation with n = 2. When m is greater than 1, the extra-

poladon number becomes very farge and the rerminal
sensitivity, which may never be reached in practice be-
cause of the enormous shoulder, includes the parameter
m. This is because in the original multi-target model, no
matter how many targets there were initially in the cell,

the sensitivity for lethality is given always by the last sur-

viving taiget. In the newer version, if there are more
potential site-pairs per cell there is a greater chance, in
proportion to their number, of hitting one of them. The
now widely used expression for survival, § = exp — («D
+ $D? is an approximation 1o equation (5), and it ap-
piies well either for low doses or for large values of m, but
not at high doses when m is-smail. The approximation
appiies when D is much less than D, so that the
chance of 2 coincident events ouna single site is negligible.
In this case S approximates to:

m m L2
= - (= D +—=— D9
S =exp «\Dl D D, D"

2
Hence « =—1§;, and =TD-2—2-. Also, % = % , and this is
the dose at which the contribautions of single and double-
events to lethality are equal. When m is very large, which
is plausibic for the number of potenial sites where a
lethal event may occur, D, must also be large for values
of S to be in the common measurable range. Hence, the
approximation will be valid to higher values of dose (D).
It is'interesting therefore that the («,B) formulation is in
effect describing the shape of the huge ‘shoulder’ of one
-type of multi-target survival curve. Also, as a quadratic is
a good approximation to other equations for survival,
e.g. Burch & Chesters {1981), it can be applied with dif-
fering limitations in most situations.

The initial slope o = (m/D,) (see right panel,

Fig. 1.1) corresponds to (1/;D,) in the original multi-
target formula (equation 3). As described above, the («,
B) formulation can be derived directly from an assumed
quadratic relationship for the production of lethal
events. However, this does not allow possible interpret-
ation of the values of the parameters in terms of target
sizes, nor the accommodation of expected deviations
from a quadratic due to considerations of target number
and target ‘overkill’, as already described.
" There are many other models, e.g. the ‘multihit’ and
the ‘pool’ models, which have biological significance but
which have not yet been used by many investigators.
Readers are referred to radiobiological texts for further
information (Elkind & Whitmore, 1967; Proceedings of
the 6th L. H. Gray Conference, 1975; Alper, 1979; Pro-
ceedings of the 1ith L. H. Gray Conference, 1984).

(Gilbert, 1975).

Cell survival parameters and groups of cells

If eells are irradiated in vitro after they have all divided
once, then the extrapolation number per initial seeded
cell should be double the value obtained if they had not
divided. After 2 divisions, it should be 4x, and after 3
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divisions it should be 8x. However, because of asyn-
chrony in most cell populations, these expectations will
not be fulfilled exactly, and there will be a distribution
of sizes of cell clusters. Further information on these
aspects has been discussed by Elkind &Whitmore
(1967).

Many structures in vivo contain presumably similar
numbers of clonogenic cells, and hence these could be
regarded as multi-target-type structures, where one sur-
viving cell per structure is required to regenerate the
structure. Hence data expressed as surviving fractions
of structures could be analysed directly using computer
methods and multitarget equations (see below).

The response of single cells in these structures can be
deduced because if one clonogenic cell or more regen-
erates a structure, then the fraction (F) of structures
ablated will be given by F = exp(—m) where m is the
mean numoer of clonogenic cells surviving per struc-
ture. If m decreases exponentially with increasing dose
at high doses, so that m = [n.exp(—D/D,)], where n is
\!he total extrapolation number per structure, then:

In(~1n F) = Ina - D/D,.

Hence if semi-logarithmic graph paper is used, and
(~1n F) is plotted on the logarithmic ordinate scale ver-
sus dose on the linear abscissa, the line produced would
have an intercept of In(n) on the erdinate and a
slope(—1/D,) (Withers and Elkind, 1970). Alternatively,
In(—1n F) can be plotted on a linear ordinate (Gilbert,
1974). The relationship between these two graphical
methods can be found in Chapter 5.

On the other hand, i&2 clonogenic cells are required
to regenerate a structure, and it will fail to grow with zero
cells [probability = exp(-m)} and with 1 cell [probability
= m.exp(-m)] then:

F = exp(-~m) + m.exp (-m) = (1 + ) exp(~m).
Hence, In F = In{l + m) — m = -m’.

At high doses ;vhen m is much less than 1, In(1 + m)
z

. m? m
approximates to (m - 2—-) and hence m’ =

T ! 2.{]..2_' - ._2_ =n' ___l.)_

hus, m 3 exp( D'Do>_ n .exp(Do
Hence, if m’ is calculated from F, and n’ and D,’ are
deduced as described above, the sensitivity will appear
greater by a factor of 2 i.e. D,/ = D, (as noted in

Ch. 17), and the extrapolation number will be much
2
greater, i.e. n’ = (-g—).

The change in the threshold dose for the ablation of
structures can be calculated, because when say F = 0.1,
m = In0.1 = 2.3. If 2 cells are required to regenerate
the structure, then when F = 0, 1,

In0.1 = In(1 + m,) - m;, and hence m; = 3.89.
As m = n exp(-D/D,),

in () =(D, - D,yD, where (D, - D,) is\the re-
m,

duction in dose between the iwo models when F = 0.1.
In the above example, (D, ~ D,)yD, = 0.59, and hence
if D,=1Gy,(D, - D;)=0.6 Gy, so that the th eshold
dose would not change by much.

If the above approximation is used directly, then

’ D, ﬂ2 -
Dy = D, 2").ln(2—)—Dq—-0.35 D,.

However, this method is less accurate because the appro-
ximation is valid only for values of n less than about 0.2.

This situation, where the survival curve almost ‘pi-
vots’ about the threshold dose and has a lower D, and
higher n, has indeed been observed in several situations
and no satisfactory explanation has yet been found, c.g.
the diurnal changes in sensitivity of intestinal crypts
(Hendry, 1975).

As already noted, the approximation of 1n(l + m) by

( _“_‘:ﬂz ) is valid only when m is less than about 0.2, i.e.
2

when F > 0.98 or when less than 2 per cent of structures
survive. In the common measurable range of 95 per cent
down to 1 per cent survival of structures, the deduced
cell survival curve would appear gently bending with an

average sensitivity characterised by D,’ = D,

reasoning can be applied to the cases where >3, or >4
etc. clonogenic cells are required for regenerating a

structure. For x cells, the terminal Dy’ would be ( Do ),
X
and the extrapofation number n'would be (—“-:i ). How-
x!

ever, with increasing values of x, the terminal D,’ would
never be reached, and hence the apparent values of D,’
and n’ over the range considered would be and
lesser respectively. This reasoning is very similar to that
applied above in the section on Transplantation Kinetics.

An extension to these ideas is where many cells are
required to regenerate a larger structure such as a tissus
or an animal. The above approach would give a much
smaller value for D,’, but in this situation s number of
surviving cells below a critical level has zero proEabzhty
of rescue. This is clearly unrealistic when the difference
between two numbers of Surviving cells is ve lsmall
and a more logical approach is that proposed by Lange &
Gilbert (1968), where each cell has a small probabxllty (o)
of rescuing the tissue. Hence, the probability of faillre is
(1- ), and wit N surviving cells, the probability of fax~
lure (F) would be given by:

= (I-a)N = exp(—Na) when « is small.
Hencc In F = (- Na).

If N is related exponentally to dose by N = No. exp

(-D/D,) where No is the total extrapolation number per
tissue, then:
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{n(-la F) = In(aNo) -D/D,,.

Plence, a plot of In(—1n F) against dose D would give
a line with slope (—1/D,) and an extrapolation number
of 1n(aNo) on the ordinate. Alternatively, (~1nF) can
be plotted on the logarithmic ordinate of semi-logarith-
mic graph paper. This approach was developed from
ideas concerning tumours presented by Munro & Gil-
bert (1961), and it has been further applied to the sen-
sitivity of ‘target’ cells in tumours (Andrews &Mossman,
1976; Wheldon et al, 1977), haemopoietic tissue (Ro-
binson, 1968), intestine (Hendry et al, 1983) and epi-
dermis (Hendry, 1984). The D, values which can be
deduced for the target cells responsible for failure of
haemopoietic tissue, intestine and epidermis are very
similar to the D, values measured directly for their re-
spective colony-forming cells. Thus this validates the
use of this approach. .

As discussed in detail elsewhere (Potten & Hendry,
1983), the necessary killing of all clofogenic cells in a
structure in order to ablate it, is analogous to the multi-
target theory for cell survival where all targets in a cell
have to be inactivated to kill it. Hence, the survival (S)
of structures will correspond to the survival of (nA) tar-
gets, where A target cells per structure each have n sub-
cellular targets, and § = 1 ~ [1 — exp(~D/D)]*A (see
equation 2, p. 6). Thus, computer programmes
which fit data to multi-target equations (Gilbert, 1969),
can be used directly to fit data for the survival of struc-
ture versus dose, and values for the cell D, and the total
number of targets per structure can be calculated. Also,
the double-logarithmic transformation described above
is a good approximation to the multi-target formula
(Watson, 1978; Potten & Hendry, 1983). When (nA) is
large and exp(—D/D,) is small, the multi-target equation
for § approximates to:

S =1 — exp[~nA. exp(—-D/D,)}
Hence, F = 1-§ = exp[—nA. exp(-D/D,)]
and In(—1n F) = 1n(nA)- D/D,.

DA per structure corresponds to No per tissue (see
above). o, which is applied above 10 the ability of a cell
to regenerate a structure, is 1 according to the definition
of a colony-forming cell. )

Thus, the double-logarithmic transformation of F is
a good approximatidK toPthé Multi-target formula not
only in the region where cell survival is related expo-
nentially with dose, but also at lower doses in the shoul-

" der region of the cell survival curve, if this is described
adequately by a conventional multi-target equation.
Specific examples are calculated in Potten & Hendry
(1983). The practical use of a linear transform of the mul-
ti-target equation has been discussed by Watson (1978).

Finally, the exponential function for ceil survival can
be replaced by more complex functions and similar

analyses of cell survival in multcellular structures can
be undertaken. Readers are referred elsewhere for fur-
ther information on this subject (Yau & Cairnie, 1979;
Thames et al, 1981; Potten & Hendry, 1983).

Curve fitting .
Cell survival data are plotted conventionally on a semi-
logarithmic plot of dose versus survival. A line or curve
can be drawn by eye through the data and values, for.
example of D, and n, can be estimated. This is satis-
factory for many purposes but many people emplo
computer methods so that (1) the statistical weighting
of individual datum points can be automatically taken
into account, (2) error limits on the fitted parameters can
be more easily calculated, (3) curves of specified shape
can be fitted to the data.

Mean survival values derived from widely-spread re-
sults are clearly not very accurate, and data points are
weighted by their inverse variance, If N cells survive out
of No at risk, the surviving fraction (P) will be N/No
and this fraction could vary between 1 and zero. If No
is actually counted (and not estimated from a sample
count), binomial statistics apply, and the variance of P

is [P_(Ilq‘_P). ). If No is estimated from a sample count,
o

and No>>1, P<<1, Poisson statistics can be applied,

and the variance of P is [ﬂ%o—l—)l] ‘when survivors are

counted, and [-II:I—.(I;P).(Z—P)] when non-survivors are
[o]

counted. Clearly the variance of P is reduced by using
(1) large samples, (2) counted numbers of cells. at risk
rather than numbers estimated from an aliquot, and (3)
at low doses (values of P near 1) when non-survivors are
counted rather than survivors.

There are several methods of curve fitting. Linear
regression can be used for simpler models where a linear
transformation of the data can easily be made, for ex-
ample with an exponential survival curve (Pike & Alper; .
1964). In this case, the sums of squares of the differ-
ences berween the observations and the fitted line are
minimised to provide the line of best fit, and sampling
errors on the regression constants can be calculated. A
worked example can be found in Mather (1964), but
computer. methods using iterative procedures are now
widely available. The main difficulty with the basic tech-
nique is in cases where a decision has to be made as to
which points to include in the fitting procedure, for ex-
ample if there is a marked curving shoulder to the sur-
vival curve.

Maximum likelihood or minimum chi-square tech-
niques are often preferred. No initial transformation of
the data is necessary except if required for subsequent
plotting purposes, and the data can be fitted to any
equation by iterative procedures. These techniques have
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been deveioped notaby by Faoney since 159§ (uptated
i Finney, 19#8), but akeo oy ethear specifically for
radiobiologica} applications (Gilbert, 1969; Pomer,
1980a,b). Best-#t cusves can e obtained, with vdlues
for the fived pasamedas and wheir associated error
Jimits, )

Several investigators who have used one or other of
these techniques can be found in the Proceedings of the
6th L. H. Gray Conference (1975), e.g. Gillespie et al,
Bryant & Lansley, Phillips et al, including this author.
New users are advised to contact someone who has ex-
perience with the use of these techniques and eithet send
them the data for fitting or obtain a copy of their pro-
gramme. The latter approach nearly always requires the
assistance of a computer programmer because of the
numerous variations in format between similar com-
puters. Somne programmes include options for fitting one
Of mofe cominon parameters to separate survival curves,

e, fruiig a cominon extrapolation number to extract
dose-modifying factors (Ptke & Mper, 1964; Gilbert,
W69).

Effeet of colony size

Many investigators have observed an increase in the
number of small colonies after increasing radiation
doses. This effect implies that when colonies containing
fewer cells are counted the CFC will appear less sensi-
tive. Two examples of this effect are shown in Figure
1.2. Nias & Fox (1968) demonstrated that when pro-
gressively smaller colonies were included in the meas-
urement of surviving fraction, the latter increased
gradually (left panel, Fig. 1.2). The effect was slightly
greater at the higher doses, suggesting that both n and
D, were affecied. Also, when compared with the strict-
est test for survival — back extrapolation of growth
curves where numerous cell divisions are needed
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Fig. 1.2 Effect on a survival curve of different criteria for counting colonies.

L;f} panel, data obtained using HeLa cells by Nias & Fox (1968). Numbers on lines correspond to minimum number of
divisions required for a celony to be counted, i.e. 6 divisions, all colonies with 33 celis or more; 7 divisions, 65 cells or more;
8, 129; 9, 157. Crosses, survival level deduced from a back-extrapolation of growth curves, and corrected for mitotic detay.
Right panel, data obtained using BHK cells, counting maximum number of cells reached per colony up to day 54 after plating
(data courtesy of Dr S. Revell). Numbers on lines correspond to minimum number of divisions required for a colony to be
counted. 1 division = 2 cells; 2 divisions = 3—4 cells; 3 divisions = 5-8 cells; 4 divisions = 9-16 cells; 5 divisions = 17-31
cells. Lower limit on number of cells due partly to cells ‘floating off” in the culture.



