- LEE W. JOHNSON
R. DEAN RIESS

LEE W. JOHNSON
R. DEAN RIESS

Virginia Polytechnic Institute and State University

NUMERICAL
ANALYSIS

A
vy
ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts « Menlo Park, California

London » Amsterdam ¢ Don Mills, Ontario » Sydney

Copyright (¢} 1977 by Addison-Wesley Publishing Company,
Inc. Philippines copyright 1977 by Addison-Wesley Pub-
lishing Company, Inc.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada. Library
of Congress Catalog Card No. 76-14658.

ISBN 0-201-03442-5
BCDEFGHIJK-MA-7987

PREFACE: SUGGESTIONS
ON THE USE OF THIS TEXT

In writing this book, our primary goal has been to provide a textbook that is well
suited for use in an introductory numerical analysis course at the undergraduate
level. We view the essential ingredients of such a text to be a proper range of
topics, a cohesive and understandable presentation, numerous examples which
stress insight into the topics, and large selections of exercises which both reinforce
the material of the text and encourage further investigation.

The list of topics is quite extensive, ranging from important classical material
to a number of relatively modern concepts. However, the text is by no means an
encyclopedia of all possible numerical methods. Rather it presents a selection of
commonly used basic procedures together with a comparative analysis of their
strengths and weaknesses. Each topic is introduced in its simplest and most
understandable form and then developed to a point where the reader has a sound
and fundamental background in the subject. With this background, the student
may independently delve deeper into the advanced aspects of problems of interest.
The examples, for the most part, are kept as simple and direct as possible in order
to illustrate a point without obscuring it. There are a few fairly intricate examples,
however, which should help the student appreciate the complex nature of typical
real-world problems. The exercises include both theoretical and computational
problems ranging from the routine to the challenging.

Although this book is intended for use in the classroom, we believe it will
serve as a valuable reference book as well since it includes an introduction to
several modern topics not usually found in many such texts. These topics include:
solutions of over-determined linear systems, spline approximation, the fast Fourier
transform, adaptive quadrature, collocation methods for differential equations,
and an introduction to some optimization techniques such as quasi-Newton
methods, Lagrange multipliers, and linear programming. The text should appeal
to engineers, scientists and mathematicians alike, in that it presents computa-
tionally efficient and practical methods and also includes sufficient mathematical

x PREFACE

theory for a thorough understanding of each method presented. The theoretical
material is kept at a minimum and is presented in an expository and intuitive
fashion, but is still sufficiently comprehensive so that the reader can understand
why each technique works, how efficient it is, and, possibly most important, what
can cause it to fail.

The text can be used either for a one-term course in introductory numerical
methods or for a full-year numerical analysis course at the junior-senior level.
This is possible since the more elementary material is placed at the beginning of
each chapter, while the more sophisticated material is near the end of the chapter
where it can be omitted without loss of continuity. We have given some illustra-
tions at the end of this preface as to how the text may be adapted to fulfill the
purposes of either type of course. There are other alternatives to our suggestions,
as the chart of chapter dependencies shows. For example, the instructor of a
one-term course may wish to omit the material on eigenvalues entirely and con-
centrate more on interpolation, quadrature, or differential equations. In either
type of course, the instructor can present the material in a different order than it
appears in the text. For example, interpolation can be covered first, if so desired.
The starred sections are more sophisticated than the others and can be either
skimmed or omitted. The depth of coverage of these special sections suggests one
way of adjusting the level of the course. The broad range of exercises also provides
flexibility in adjusting the level of the course.

The prerequisites for either type of course are basic calculus and a familiarity
with the ideas of a matrix and a determinant. The fundamental results from
calculus that we use frequently are listed in Chapter 1 and most of the funda-
mentals of matrix theory are reviewed in Chapter 2. We occasionally introduce
material that is not always covered in a freshman/sophomore caiculus course,
such as norms, inner-products and eigenvalues. In these instances, we give a

2 4 5
Solution of Solution of Interpolation and
linear systemns nonlinear equations approximation
3 8 6
The algebraic Optimization Numerical integration
eigenvalue problem and differentiation
7
Solutions of ordinary
differential equations

Fig. 1 Relationship of the chapters.

PREFACE xi

careful exposition and the reader should have little difficulty understanding the
material and its relevance to the particular topic or method being discussed.
Whenever possible, material that requires some mathematical maturity is left to
the later sections of a chapter or included in the starred (optional) sections.

Although some computational experience can be gained on a desk calculator,
it is useful for a student to have a modest programming ability in a language such
as FORTRAN. To aid the student in gaining computational experience, we have
included a number of fairly simple programs for some of the numerical methods.
These programs are in the form of subroutines which are documented and easy
to understand since they are written to parallel the statement of the algorithms.
In the interest of clarity, we have not tried to include all-purpose, fool-proof codes
that handle every possible contingency. Comprehensive, well-tested programs of
this sort are available in the literature and in most computer libraries. As we
develop techniques to avoid pitfalls that can occur in a particular method the
reader should be able to expand the simple programs given in the text to accom-
modate these techniques.

Chapter 2: Sections 1.,2.,2.1,22,2.3,24

Chapter 3 Sections 1., 2.

Chapter 4: Sections 1.,2.,3.,3.1,3.2,3.3,3.4,4, 4.1
Chapter 5: Sections 1.,2.,2.1,22,23,24

Chapter 6. Sections 1.,2.,2.1,2.2,23,24

Chapter 7. Sections 1.,2.,2.1,2.2,23,24, 3.4, 5.

Fig. 2 Suggested list of sections for a self-contained
one-term course in numerical methods.

The first chapter presents basic material on rounding errors and floating-
point arithmetic. These topics are further discussed and illustrated as they pertain
to particular methods in succeeding chapters. However, since a thorough under-
standing of the effects of rounding and ill-conditioning requires a considerable
theoretical background in mathematics and statistics, we primarily present these
sources of error intuitively and illustrate them in the methods where they can
cause the greatest difficulties.

The chart in Fig. 1 shows the relationships among the chapters of this book.
For example, Chapters 5 and 6 are prerequisite to Chapter 7, but Chapter 7 does
not depend on the material in Chapters 2, 3 and 4. (In a few instances, some
starred sections and starred problems depend on other chapters.) Figure 2 is a
list of sections that are appropriate for a comprehensive and self-contained one-
term course on numerical methods. The instructor may wish to modify this
suggested set of topics deleting some and including others that we have not listed.
Furthermore, there are sufficient topics that the instructor of a full-year sequence
can selectively omit or skim some, while treating others more carefully.

Blacksburg, Virginia L.W.J
January 1977 R.D.R

CONTENTS

1 Computational and Mathematical Preliminaries

.

3
4

1
1.2
1
I

Introduction

Errors in computations

Rounding errors and floating point arithmetic
Review of fundamental mathematical results

2 Solution of Linear Systems of Equations

2.1

2.2

2.3

2.4

2.5
*2.6

Introduction

Direct methods

2.2.1 Gauss elimination

2.2.2 Operations counts

2.2.3 Implementation of Gauss elimination
2.2.4 Factorization methods

Error analysis and norms

2.3.1 Vector norms

2.3.2 Matrix norms

2.3.3 Condition numbers and error estimates
2.3.4 Iterative improvement

Iterative methods

2.4.1 Basic iterative methods

2.4.2 Implementation of iterative methods
Least-squares solution of over-determined linear systems
The Cauchy-Schwarz inequality

3 The Algebraic Eigenvalue Problem

3.1
3.2

Introduction
The power method
3.2.1 Deflation

N W N =

15
22
22
26
28
32
37
37
40
43
46
50
53
59
61
65

68
74
82

iv. CONTENTS

3.2.2 The inverse power method 85
3.2.3 The Rayleigh quotient iteration 88
3.3 Similarity transformations and the characteristic equation 90
3.3.1 Localization of eigenvalues 92
3.3.2 Transformation methods 95
3.3.3 Householder’s method 100
*3.4 Schur’s theorem and related topics 105

4 Solution of Nonlinear Equations

4.1 Introduction 112
4.2 Bracketing methods 115
4.3 Fixed-point methods 119
4.3.1 The fixed-point problem 120
4.3.2 Rate of convergence of the fixed-point algorithm 125
4.3.3 Newton’s method 129
4.3.4 The secant method 134
4.3.5 Newton’s method in two variables 138
4.4 Zeros of polynomials 141
4.4.1 Efficient evaluation of a polynomial and its derivatives 143
4.4.2 Bairstow’s method 149
4.4.3 Localization of polynomial zeros 153
*4.5 Newton’s method in several variables 158

5 Interpolation and Approximation

5.1 Introduction 166
5.2 Polynomial interpolation 171
5.2.1 Efficient evaluation of the interpolating polynomial 173
5.2.2 Interpolation at equally spaced points 178
5.2.3 Error of polynomial interpolation 187
5.2.4 Translating the interval 193
*5.2.5 Polynomial interpolation with derivative data 196
5.2.6 Interpolation by cubic splines 200

5.3 Orthogonal polynomials and least-squares approximations 210
5.3.1 Efficient computation of least-squares approximations 221
#5.3.2 Error estimates for least-squares approximations 226
*5.4 Approximation by rational functions 230

6 Numerical Integration and Differentiation

6.1 Introduction 235
6.2 Interpolatory numerical integration 235
6.2.1 Transforming quadrature formulas to other intervals 239
6.2.2 Newton-Cotes formulas 240
6.2.3 Errors of quadrature formulas 241

6.2.4 Composite rules for numerical integration and the
Euler-Maclaurin formula 244

*6.3
6.4

6.5

6.6

CONTENTS v

Adaptive quadrature

Richardson extrapolation and numerical differentiation

6.4.1 Romberg integration

Gaussian quadrature

6.5.1 Interpolation at the zeros of orthogonal polynomials

6.5.2 Interpolation using Chebyshev polynomials

6.5.3 Clenshaw-Curtis quadrature

Trigonometric polynomials and the fast Fourier transform

6.6.1 Least-squares fits and interpolation at equally spaced points
*6.6.2 The fast Fourier transform

Numerical Solution of Ordinary Differential Equations

7.1
7.2

7.3
7.4
7.5
7.6

7.7
7.8

Introduction

Taylor’s series methods

7.2.1 Euler’s method

7.2.2 Taylor’s series methods of order &

7.2.3 Error analysis for one-step methods

7.2.4 Runge-Kutta methods

Predictor-corrector methods

Round-off errors

nth-order differential equations and systems of differential equations
Errors in predictor-corrector methods

7.6.1 Step-size control for predictor-corrector methods
7.6.2 Stability of predictor-corrector methods

The method of collocation

Boundary value problems for ordinary differential equations
7.8.1 Finite difference methods

7.8.2 Shooting methods

7.8.3 Collocation methods

Optimization

8.1 Introduction
8.2 Extensions of results from calculus
8.3 Descent methods

8.3.1 Steepest descent

8.3.2 Quasi-Newton methods
8.4 Lagrange multipliers
8.5 Linear programming

References

Index

251
253
257
259
265
267
271
275
277
280

284
289
290
293
296
299
304
311
313
316
320
322
326
330
330
331
332

334
334
339
339
343
346
352

359
363

COMPUTATIONAL AND
MATHEMATICAL PRELIMINARIES

1.1 INTRODUCTION

In this text we shall concentrate on that portion of numerical analysis that is
concerned with the solution of scientific problems utilizing modern high-speed
computers. Even from this possibly narrow point of view, numerical analysis is
quite widely interdisciplinary. It involves engineering and physics in converting
a physical phenomenon into a mathematical model; it involves mathematics in
developing techniques for the solution (or approximate solution) of the mathe-
matical equations describing the model; finally it involves computer science for
the implementation of these techniques in an optimal fashion for the particular
computer available. These three processes are not independent and we should
not lose sight of this dependence as we consider a particular aspect of a problem.
For example, it is often the case that certain idealistic restrictions must be placed
on a physical system in order to obtain a tractable mathematical model. Further-
more, it is possible that mathematical techniques which are derived to “solve” the
equations of the model and which serve very well in theory cannot be practically
implemented on a particular computer. The task of the numerical analyst is
therefore to synthesize these processes and obtain “acceptable” numerical answers.
(It is also part of the task to be able to determine when and why “acceptable”
answers for a particular problem on a particular computer cannot be attained.)

In this text we shall concentrate on the latter two phases of this three-fold
process in order to cover more topics, but we will try not to lose sight of the “real
world” origins of the problems. In this chapter we shall discuss some basic con-
cepts such as computer representation of numbers, floating-point arithmetic, and
rounding errors. We shall also list some basic mathematical results from the
calculus which will be useful in the analysis of the numerical methods.

2 COMPUTATIONAL AND MATHEMATICAL PRELIMINARIES

1.2 ERRORS IN COMPUTATIONS

In analyzing the accuracy of numerical results, the numerical analyst should be
aware of the possible sources of error in each stage of the computational process
and of the extent to which these errors can affect the final answer. We will consider
that there are three types of errors which occur in a computation. First, there are
errors which we call “initial data” errors. These are errors which arise when the
equations of the mathematical model are formed, due to sources such as the
idealistic assumptions made to simplify the model, inaccurate measurements of
data, miscopying of figures, the inaccurate representation of mathematical con-
stants (for example, if the constant 7 occurs in an equation, we must replace © by
3.1416 or 3.141593, etc.). Another class of errors, “truncation” errors, occurs when
we are forced to use mathematical techniques which give approximate, rather
than exact, answers. For example, suppose we use the Maclaurin’s series expansion
to represent e*, so that ¢ = 1 + x + x?/2! + --- + x"/n! + ---. If we want a
number that approximates ¢® for some f§, we must terminate the expansion in
order to obtain ¢/ ~ 1 + f + p%2! + -+ + B*k!. Thus &/ =1+ B + B*/2! +
-~ 4 B¥/k! + E, where E is the truncation error introduced in the calculation.
Truncation errors in numerical analysis usually occur because many numerical
methods are iterative in nature, with the approximations theoretically becoming
more accurate as we take more iterations. As a practical matter, we must stop the
iteration after a finite number of steps, thus introducing a truncation error. The
last type of error we shall consider, “round-off” or “rounding” errors, is due to
the fact that a computer has a finite word length. Thus most numbers and the
results of arithmetic operations on most numbers cannot be represented exactly
on a computer. Even though the computer is capable of representing numerical
values and performing operations on them, we should be aware of how this is
accomplished so that we can understand the error that is produced by inexact
representation.

Initial data errors and truncation errors are dependent mostly on the par-
ticular problem we are examining, and we shall deal with them as they arise in
the context of the different numerical methods we derive throughout the text. The
total effect of round-off errors is sometimes dependent on the particular problem,
in the sense that the more operations we perform, the more we can probably expect
the round-off error to affect the solution. The individual round-off error due to any
individual number representation or arithmetic operation is dependent, however,
on the particular computer being used, and thus we shall examine the possible
sources of this error in the next section, before we introduce any specific numerical
methods. We emphasize that it is the effect of total error, from any and all sources,
with which we are ultimately concerned. For example, we shall later see problems
where a “small” error (no matter from what source) can cause a “large” error in
the final solution. Problems of this type are called ill-conditioned and must be
treated very carefully to obtain an acceptable computed answer.

1.3 ROUNDING ERRORS AND FLOATING POINT ARITHMETIC 3

There are two ways to measure the size of errors. In analyzing the error of a
computation, if we let X represent the “computed solution” to the “true solution”
x, then we define the absolute error to be (x — X) and the relative error to be
(x — X)/x. (If the true solution x is zero, then we say the relative error is undefined.)
We shall consider these concepts again in later sections, but we briefly pause to
mention here that the relative error is usually more significant than the absolute
error, and hence we shall try to establish bounds for the relative error whenever
possible. To illustrate this point, suppose that in “Computation A” we have x =
0.5 x 107% and ¥ = 04 x 10~* while in “Computation B” we have x = 5000
and X = 4950. The absolute errors are 0.1 x 10~* and 50, respectively, but the
relative errors are 0.2 and 0.01, respectively. Stated differently, Computation A
has a 20% error, while Computation B has only a 1% error.

In investigating the effect of the total error in various methods, we shall often
mathematically derive an “error bound,” which is a limit on how large the error
can be. (This applies to both absolute and relative errors.) It is important that the
reader realize that the error bound can be much larger than the actual error and
that this is often the case in practice. Any mathematically derived error bound
must account for the worst possible case that can occur and is often based upon
certain simplifying assumptions about the problem which in many particular
cases cannot be actually tested. For the error bound to be used in any practical
way, the user must have a good understanding of how the error bound was derived
in order to know how crude it is, i.e., how likely it is to overestimate the actual
error. Of course, whenever possible, our goal is to eliminate or lessen the effects
of errors, rather than trying to estimate them after they occur.

1.3 ROUNDING ERRORS AND FLOATING POINT ARITHMETIC

The first type of rounding error that we encounter in performing a computation
evolves from the fact that most real numbers cannot be represented exactly on a
computer. Superficially, readers are probably not surprised by this statement
since they are aware that irrational numbers such as n or e have an infinite non-
repeating decimal expansion. Thus they know that even for a hand computation
they must use an approximation such as 3.14159 for = or 2.718 for e, and they
carry as many digits in their approximations as they feel are necessary for a
particular computation. Nevertheless, they realize that once these approximations
have been used an error has been introduced into the calculation that can never
exactly be corrected. 7

Since only a finite number of digits can be represented in computer memory,
each number x must be represented in some fashion that uses only a fixed number
of digits. One of the most common forms is the “floating-point” form, where one
position is used to identify the sign of x, a prescribed number of digits are used
to represent the “mantissa” or fractional form of x, and an integer is used to

4 COMPUTATIONAL AND MATHEMATICAL PRELIMINARIES

represent the “exponent” or “characteristic” of x with respect to the base b of the
representation. (Modern, preferred terminology uses “significand” for mantissa
and “exrad” for exponent.) Thus each x can be thought of as being represented
by a number X of the form +(0.a,a, - - - a,) x (b°) where m is the number of
digits allowed in the mantissa, b is the base of the representation, c is the exponent.
Additionally, there are two machine-dependent constants, u and M, such that
¢ < ¢ < M. We shall consider three bases: (i) b = 10 (decimal)—with which the
reader is familiar and which is used on some machines; (ii) b = 16 (hexadecimal),
which is common to the IBM 360 and 370 series; and (iii) b = 2 (binary), which
is, in a sense, the most fundamental of the three. To be in proper form we require
the mantissa, a = 0.a,4, - - - a,,, to satisfy |a[<l=»handeachaqg, | <i<m,
to be an integer such that 0 < a; < b — 1, with a; # 0 (unless x = 0). The
floating-point representation, X, is then said to be “normalized.”

The floating-point decimal form (b = 10) should be familiar to the reader.
For example, the decimal number 150.623 is the same as 0.150623 x 10* and can
also be regarded as

(1 x 10%) + (5 x 10) 4+ (0 x 10°) + (6 x 1071 + (2 x 1072) + (3 x 1073).
Likewise, the binary number 110.011 equals

(Ix2+ (I x2)4+0x2%+O0x2H+ 1 x27H+(1x27%,
and the hexadecimal number 15F.A03 equals
(1 x 16%) +(5 x 161 + (F x 16°) + (A x 16 1) + (0 x 1672) + (3 x 1673).

Note that there are only two digits, 0 and 1, in the binary system, and there are
sixteen digits in the hexadecimal system; 0, 1,2, 3,4,5,6,7,8,9,A,B,C, D, E, F;
where the decimal equivalents of A, B, C, D, E, F are 10, 11, 12, 13, 14, 15; re-
spectively. Also note that the hexadecimal system is a natural extension of the
binary system, since 2* = 16, and hence there is precisely one hexadecimal digit
for each group of four binary digits (“bits”) and vice versa (0 = (0000),, 7 = (0111),,
A = (1010),, F = (1111),, etc.).

The conversion of an integer from one system to another is fairly simple and
can probably best be presented in terms of an example. Let k = 275 in decimal
form, that is, k = (2 x 10%) + (7 x 10') + (5 x 10°). Now (k/16%) > 1, but
(k/16*) < 1, so in hexadecimal form k can be written as k = (x, x 16%) +
(; x 16%) + (2p x 16°). Now, 275 = 1(16) + 19 = 1(16%) + 1(16) + 3,and so
the decimal integer, 275, can be written in hexadecimal form as 113, that is,
(275),0 = (113),4. The reverse process is even simpler. For example, (5C3),¢ =
5(16%) + 12(16) + 3 = 1280 + 192 + 3 = (1475),,. Conversion of a hexadeci-
mal fraction to a decimal is similar. For example, (0.2A8),¢ = (2/16) + (A/162) +
(8/16%) = (2(162) + 10(16) + 8)/16> = (680)/4096 = (0.166),,, (carrying only three
digits in the decimal form). Conversion of a decimal fraction to hexadecimal (or

1.3 ROUNDING ERRORS AND FLOATING POINT ARITHMETIC 5§

binary) proceeds as in the following example. Consider the number r, = 1/10 =
0.1 (decimal form). Then there exist constants {o; };°; such that

reo=0.1 = a;/16 + 0,/16% + 03/16% + a,/16* + - - -

Now, 16r, = 1.6 = a; + 0,/16 + «3/16% + 04/16% + ---. Thus a, = 1 and
r, = 0.6 = a,/16 + a3/16% + a,/16% + - -+ . Again, 16r, = 9.6 = o, + 03/16 +
ay/16> + -~ -, s0a, = 9and r; = 0.6 = a3/16 + a,/16% + - - -. From this stage
on we see that the process will repeat itself, and so we have (0.1),, equals the
infinitely repeating hexadecimal fraction, (0.1999 - -). Since 1 = (0001), and
9 = (1001), we also have the infinite binary expansion

r; = (0.1)10 = (0.1999 - -), = (0.0001 1001 1001 1001 - - -),.

From the above example we begin to discern one problem of number repre-
sentation. Not only do we have problems with irrational numbers and infinite
repeating decimal expansions such as 1/3 = 0.333 - - -, but we also see that an
m-digit terminating fraction with respect to one base may not have an n-digit
terminating representation in another base. (If we were performing an iteration
on a hexadecimal machine, the above example suggests that we should probably
choose a step-size of h = 1/16 over h = 1/10,h = 1/1024 = 1/2*° over h = 1/1000,
etc., if at all possible.) In Table 1.1 we have taken several integers k, formed
the reciprocals, 1/k, and added the reciprocal to itself k times. The theoretical
result of each computation should, of course, equal 1. The calculations were
performed on a six-digit hexadecimal machine.’

Table 1.1

k Sum(1/k) k Sum(l1/k) k Sum(1/k)

2 0.1000000E 01 9 0.9999999E 00 16 0.1000000E 01
3 0.9999999E 00 10 0.9999996E 00

4 0.1000000E 01 11 0.9999997E (0 1000 0.9999878E 00
S 0.9999999E 00 12 0.9999998E 00 1006 0.9999912E 00
6 0.9999998E 00 13 0.9999999E 00 1012 0.9999843E 00
7 0.9999999E 00 14 0.9999995E (0 1018 0.9999678E 00
8 0.1000000E 0Ot 15 0.9999999E Q0 1024 0.1000000E 01

We must, of course, realize that part of the error in the above table is due to
the round-off from addition. We shall discuss this momentarily, but for now the
reader should notice the relative accuracies for the values of k which were powers
of 2. For example, compare k = 1000 to k = 1024 = 2'°.

We next consider how numbers are represented in an m-digit machine,
particularly those numbers for which m digits are not sufficient to represent the

¥ Most of the computer programs in this text were run on an IBM 370/158.

6 COMPUTATIONAL AND MATHEMATICAL PRELIMINARIES

number exactly. For example, how might a number like 1 be represented on a
5-digit decimal computer, since 3 = 0.3333333 - - - . As a general example, suppose
a real number x is given exactly by

X = £(08,8, Gplpsy) x 105, 3 #0

and suppose we want to represent x in an m-digit decimal computer. There are
two common ways of representing x. First, we can simply leta, = G, 1 < k < m,
discard the remaining digits, and let the computer representation be

X = i(o.alaz ce am) X IOC.

This is known as “chopping.” The other representation is the familiar “symmetric
rounding” process which is equivalent to adding 5 x 10°"™ ! to x and then
chopping (we think of adding 5 to @, ;). Of course, if ¢ < g or ¢ > M, the number
lies outside the range of admissable computer representations. If ¢ < y, (under-
flow), it is common to regard x as zero, notify the user, and continue further
computation. If ¢ > M, then overflow results. It is usually deemed not worth the
added expense to use symmetric rounding and most machines simply chop.
Whether a representation is obtained via chopping or symmetric rounding, we
shall hereafter refer to the machine representation, X, as being “rounded.” Note
that the above was illustrated in decimal form for simplicity; the analogy can be
carried over to other bases. For example, if x has the hexadecimal form

X = i(o.&'lﬁz T 5m5m+1 ot ') X 166, 51 # 0,

then the “decimal” point is really a “hexadecimal” point, and

X = @ x 1675} x 16

The chopped form is still obtained by deleting @, k > m + 1. Symmetric rounding
is done by adding 8 x 16°7”7! to x and then chopping.

Returning to decimal form for simplicity, we first consider the error in sym-
metric rounding. If @,,, ; > 5, then

X —=X=(+£04a, 81) x 10° = [(£0.3; " 881 y) + (£0.0:--05)] x 105
Ifd,,; <5, then
X =X =(4£04d, - Buliysq) x 106 = (£0.4, ---a,) x 10°

In either case we have that [x — X| < 0.5 x 10°™™, and this is a bound on the
absolute error. To get a bound on the relative error, we note that since @, # 0,
then |x| > 0.1 x 10¢, Thus the relative error satisfies

x —x _05x 107"
<

NS oTag TS x0T =0s <10

1.3 ROUNDING ERRORS AND FLOATING POINT ARITHMETIC 7

In a similar manner we can show that the relative error from chopping is 1 x
10~™%1 It is interesting to note that neither of these relative error bounds depend
on the magnitude of x, that is, the size of ¢. Rather they depend only on the value of
m, which is thus said to be the number of “significant digits” of the computer. For
example, the IBM System 360 and 370 are hexadecimal with a mantissa of m = 6.
The relative error from chopping in number representation thus does not exceed
1 x 167°. To compare this with the accuracy of relative errors we expect in the
decimal mode, weset 1 x 1673 = 1 x 107"*! Solving for m yields m ~ 7. Thus
we have approximately seven-significant-digit decimal accuracy with respect to
the relative error of the representation. This does not mean that any seven-digit
decimal number can be represented exactly on this machine as the previous
example of x = 1/10 shows. It does say, however, that |x — X|/|x| < 107°
(approximately, since m = 7).

In the discussion above, we analyzed the error made by replacing the true
value of x by its machine representation X. Now we wish to assess the effect of
each arithmetic operation (+,—,-,+) to see how errors propagate. Let us use X
to denote the machine approximation to the true value x, where the error, e(x) =
x — X, includes all errors that have been made in going from x to X, that is, e(x)
not only includes the error of representation but also includes errors from previous
calculations, initial data errors, etc. In other words, e(x) includes all errors from
the beginning of the calculation that have led to any discrepancies between x and
X. With e(y) defined similarly for any quantity y, we investigate the error resulting
from the “machine addition” of x and y. Now,

x+y=@&+ex)+(F+e)=K+7 + (elx) + e(y).

At first glance it seemas that the error of the addition is merely the sum of the
individual errors. However, this is not always true, since even though X and y
can be represented exactly on the machine, it is not necessarily true that their
sum can also be, i.e., it does not follow that X + § = X + y. For example, con-
sider a four-digit floating-point machine and let X = 09621 x 10° and y =
0.6732 x 10° Then X + 7 = 1.6353 x 10° Now it is not uncommon for an
m-digit machine to perform arithmetic operations in a 2m-digit accumulator and
then to round the answer. Assuming this to be true, we have X + y = 0.1635 x 10"
Returning to our general analysis we see that the true error, z — Z, where z =
x + y, is actually (e(x) + e(y)) plus the error between X + y and X + 7.

Before examining the other three arithmetic operations, let us consider addi-
tion somewhat further. We can see immediately that addition can lead to overflow,
for instance, ¥ = 0.9621 x 10™ and § = 0.6732 x 10, thus X + ¥ does not fall
within the range of the computer. Another factor that we must consider is that
before a machine can perform an addition, it must align the decimal points. For
example, again let m = 4 with X, = 0.5055 x 10* and X, = X3 = - X;; =
0.4000 x 10°. To perform the addition, X, + X,, the computer must shift the
decimal four places to the left in X, and form X, + X, = (0.5055 x 10%) +

8 COMPUTATIONAL AND MATHEMATICAL PRELIMINARIES

(0.00004 x 10*) = (0.50554 x 10*), which rounds to X; + x, = 0.5055 x 10* =
X,. Continuing, we see that

(X + X))+ X3) + X)) + - X)) =Xy,
but

((((Xyy + X0) + Xo) + Xg) + - - + X;) = 0.5059 x 10*

which is the correct answer. Thus the machine calculates Y /2, X, _; correctly,
but not the sum) !, X;. This example illustrates the rule of thumb that if we
have several numbers of the same sign to add, we should add them in ascending
order of magnitude to minimize the propagation of round-off error. The mathe-
matical foundation underlying this statement is the fact that machine addition is

not associative, i.e., it can happen that

xX+)+zZ2£x+(+ 2.

The following numerical examples were run to illustrate this phenomenon.
(We used a hexadecimal machine with m = 6.) Letting x = 1048576 = 16° = x
andy = z = 1/2 = 8§/16 = § = Z, our machine results were

(x + 7 + Z = 0.1048576E07
and
X + (¥ + 2z) = 0.1048577E07,

as our above analysis leads us to expect. Letting w, = 1048576 = 16> = W, and
we = 1/16 = W,, 1 < k < 256, we also obtained the following results (adding in
the order indicated by the sum):

256
Z wy, = 0.1048576E07 = w,
k=0

but
256

Z Wyse—x = 0.1048592E07,

k=0

the latter being the correct result (which we can easily check by hand). As a final
example we computed the sum, S = > 729 (1/k(k + 1)) = 0.999, by adding for-
wards and backwards and obtained

S & 0.9989709E00 (forwards), S ~ 0.9989992E00 (backwards).
The error analysis for subtraction is much the same as addition, in that
x=—y=K-Y + (e(x) — e(y),

but now we have the problem that subtraction can cause loss of significant digits.

