Handbook of linear integrated electronics for research

T. D. S. Hamilton

73.95073 MONE

Handbook of linear integrated electronics for research

T. D. S. Hamilton

Senior Lecturer in Physics University of Manchester

McGRAW-HILL Book Company (UK) Limited

London · New York · St Louis · San Francisco · Auckland · Bogotá Düsseldorf · Johannesburg · Madrid · Mexico · Montreal · New Delhi Panama · Paris · São Paulo · Singapore · Sydney · Tokyo · Toronto

5505675

McGRAW-HILL Book Company (UK) Limited ,

MAIDENHEAD · BERKSHIRE · ENGLAND

British Library Cataloguing in Publication Data

Hamilton, T D S

Handbook of linear integrated electronics for research.

1. Linear integrated circuits

I. Title 621.381'73

TK7874

77-30037

ISBN 0-07-084483-6

Copyright © 1977 McGraw-Hill Book Company (UK) Limited. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of McGraw-Hill Book Company (UK) Limited, or of the original copyright holder.

12345 WC&S 7987

PRINTED AND BOUND IN GREAT BRITAIN

Preface

'Experience is the name everyone gives to their mistakes.'

Oscar Wilde

This book is intended for people in a wide range of fields who use electronics in their experimental work. It is not particularly intended as a textbook or for professional engineers, though it could be of substantial use in both cases. Electronics is a vast subject and one cannot hope either to cover all of it in one volume, or even to know much about many aspects of it, so a severe restriction on topics must be accepted. I have chosen to omit both communication and digital applications. The former is not commonly of interest to experimenters, and the latter requires several volumes to even begin to do it justice.

The development of low cost integrated circuits constitutes, in my view, a revolution in electronics, possibly of greater magnitude than the advent of the transistor itself. It is now possible to think largely in terms of building blocks which can be assembled to form the required system, without necessarily knowing too much about the more detailed techniques of circuit design. Some knowledge of the mode of operation, however, can lead to more effective use of any device. The ready availability of many circuit functions, therefore, has been taken as the unifying feature of much of the present book.

The choice of topic and level of treatment has been strongly influenced by personal experience and by discussions with colleagues and students. As a physicist rather than an electronic engineer, one possibly sees things somewhat differently and this influences the way one understands and describes them. I have tried to concentrate on an understanding of how things work rather than on specific applications—the latter are covered by a fairly extensive collection of references to the literature and to the many excellent application notes produced by manufacturers. Though their efforts in this direction may not always be entirely altruistic, they and their authors deserve our commendation for this very substantial contribution of really useful information and guidance.

A rather larger number of references than is usual have been included and, though some of them may effectively duplicate one another, this makes it more likely that you will have access to a suitable one. More general references to a wide range of applications are given in chapter 11, followed by a bibliography of useful books. The references have been prepared directly from a computer print-out which allows them to be more up to date than would otherwise be possible. It should be noted that by no means all the references are referred to in the text, so it is worth scanning through the appropriate list to see if any others may be of use. Full titles are given in

every case, so it is easier to decide whether they are worth looking up. Nowadays data sheets often contain extensive application information, so reference to these is not only an indication of the origin of the various devices.

The level of treatment poses a delicate problem—at what level does one start and how far should the development go? There is a tendency to eschew all but the most elementary mathematical ideas, but it seems to me too great a loss not to make use of some of the powerful and instructive tools available. In particular, the Laplace transform is so useful in circuit theory, and provides such a convenient description of many important situations, that it has been used wherever necessary. A short description is given of its use and application, at least to the level where a table of transform pairs can be used as readily as a set of log tables. Time spent in studying this section (1.11) will, I feel, be amply rewarded in understanding circuits, and in time saved in debugging poorly designed systems.

Chapter 1 is a resume of useful basic circuit theory—the sort of mental furniture it is useful to have readily available. If the material is not familiar it may well repay the effort of reading this before consulting other sections. Chapter 2 begins the consideration of integrated circuits, with coverage of the forerunner of most linear devices (and still the cornerstone of systems)—the operational amplifier. This device has gone through several generations of development (now said by the admen to be in the third or is it the fourth?) and has now reached a very advanced level, with a multitude of models to suit practically every need. The introduction of negative feedback, upon which operational amplifiers depend, must rank as one of the great landmarks in the history of electronics. However effective, use of feedback requires a good understanding if disaster is to be avoided. Chapter 3 covers this topic in some detail in a form suitable for practical application.

The most common system element is probably the amplifier, operational or otherwise. Chapter 4 covers a range of the more commonly encountered types, from low-level to power and d.c. to wideband, with some discussion of servo theory en passant. Chapter 5 deals with oscillators, both sinusoidal and function generators. Also included are other positive feedback applications, such as the various forms of multivibrator, and the commonly used negative resistance unijunction transistor. A number of linear circuit functions are used frequently enough to warrant development of a range of IC realizations. Chapter 6 covers a number of the commonly used functions—comparators, multipliers, modulators, phase-locked loops, and sample-holds.

In every electronic circuit there is always the often somewhat neglected power supply. The whole of chapter 7 is devoted to this and related topics, covering rectification, regulation including regulator diodes, and the increasingly popular switching regulator. In recent years there has also been considerable progress in IC regulators, so that for most purposes, the provision of regulated supplies is now quite simple and in many situations more effective than before. The treatment of regulators as power operational amplifiers enables the theory of the latter, developed in chapters 2 and 3, to be used directly here.

Chapter 8 treats a number of useful discrete devices: field-effect transistors and their derivatives voltage-controlled resistors and switches, and the range of thyristor devices. Though a wide range of optical detectors has long been available, the field of optoelectronics has been somewhat limited because of the lack of convenient and fast light sources. The discovery of the light-emitting diode, in particular, has led to

considerable development in the field of optoelectronics, and chapter 9 treats the more commonly used devices.

It is in the nature of research that one is frequently looking for signals hidden by noise. For this reason, particular attention has been paid to the characteristics of noise (Sec. 1.8), the performance of low-noise amplifiers (Sec. 4.1) and optical detectors (Sec. 9.3, 9.4) and, in chapter 10, the extraction of signals from noise. Though this represents by no means a comprehensive coverage, it is hoped that it will provide at least the realization of the importance of noise and of designing to minimize it. It is often no more difficult or expensive to produce a low noise rather than a noisy system.

I should like to thank my colleagues and all the correspondents who kindly answered my queries, and the semiconductor and other manufacturers who willingly supplied information, literature, and permission to copy diagrams. Also I must thank the members of the computer group of Daresbury laboratory for their assistance with my problems in setting up the reference data, Clara Nicholls for her most careful typing, and finally my family for their tolerance and understanding over the several years this book has been in the making.

The Physical Laboratories University of Manchester Manchester M13 9PL, England

21 September 1976

Notation

```
prefix atto, 10^{-18}
 a
 Α
              ampere, unit of current
 В
              susceptance
 9
              bandwidth
 Ø<sub>N</sub>
              noise bandwidth
 C
              capacitance
 C
              coulomb, unit of charge
C_{\mathbf{I}}
              junction capacity
CMRR
              common-mode rejection ratio
dB
              decibel
D
              FET drain
E_{\rm C}
              capacitor voltage
E_{\mathbf{P}}
              peak voltage
E_{\tau}
              transformer voltage
              offset voltage
e_{os}
F
              farad, unit of capacitance
F
              noise figure
              frequency
f
              prefix femto, 10^{-15}
f_{\mathsf{T}}
              transition frequency
              transconductance
g_{\rm fs}
              transconductance
g_{\mathrm{m}}
g_{
m os}
              output conductance
G
              prefix giga, 10<sup>12</sup>
G
              conductance
G
              FET gate
G
              gain
G_{
m bp}
              band-pass gain
G_{\mathsf{bs}}
              band-stop gain
G_{d}
              differential gain
G_{\mathsf{hp}}
             high-pass gain
G_{\mathsf{lp}}
             low-pass gain
G_{n}
             noise gain
G_{\mathbf{P}}
             power gain
G(s)
             gain at frequency s
G(0)
             gain at zero frequency
G_{0}
             gain at zero frequency
```

```
G(\infty)
              gain at infinite frequency
 G_{\alpha}
              gain at infinite frequency
              henry, unit of inductance
 Н
 H<sub>2</sub>
              hertz, unit of frequency
              transistor d.c. current gain
 hee
              base current
 I_{\mathbf{R}}
              collector current
 I_{\rm C}
              FET drain current
 I_{\rm D}
              FET drain current at zero bias
 I_{\text{nes}}
              FET drain current for zero temperature coefficient
 I_{D7}
 I<sub>F</sub>
              emitter current
 I_{G}
              gate current
 I_{\rm H}
              holding current in thyristor
              P-N junction reverse saturation current
 I,
 i,
              bias current
              collector noise current
i_{NC}
              drain noise current
 i_{ND}
              emitter noise current
i<sub>NE</sub>
              gate noise current
 i_{NG}
              shot-noise current
i_{
m NS}
I
              joule, unit of energy
K
              kelvin, unit of absolute temperature
k
              Boltzmann's constant, 1.38 \times 10^{-23} J/K
k
              prefix kilo, 10<sup>3</sup>
L
              inductance
L
              load
M
              prefix mega, 10<sup>6</sup>
             prefix milli, 10^{-3}
m
m
              metre, unit of length
N
              turns
             prefix nano, 10^{-9}
n
P
             power
             prefix pico, 10^{-12}
p
Q
             quality factor
Q
             charge
Q
             transistor
q
             electronic charge, 1.602 × 10<sup>-19</sup> C
R_{\rm cm}
             common-mode resistance
R_{d}
             differential input resistance
R_{\rm f}
             feedback resistor
R.
             input resistor
R_{id}
             input differential resistance
RL
             load resistance
R_{NI}
             equivalent noise current resistance
             equivalent noise voltage resistance
R_{NV}
Rsv
             voltage source resistance
             optimum source resistance
R_{Sloot}
```

11, 11, 12, 198

current source resistance

 R_{SI}

```
R_{\rm S}
             source resistance
             transistor base resistance
r_{\rm b}
             base spreading resistance
r_{
m bb'}
             base-emitter resistance
rbe
             transitor emitter resistance
re
             diode incremental resistance
r<sub>e</sub>
S
             source
S
             FET source
S
             signal
s
             second, unit of time
             complex frequency
s
\boldsymbol{T}
             time constant
\boldsymbol{T}
             time interval or delay
Т
             prefix tera, 109
             pulse width
             risetime
t_{r}
t_{rr}
             reverse recovery time
             volt, unit of potential
V_{\rm RE}
             base-emitter voltage
V_{\rm CC}
             supply voltage
V_{CE}
             collector-emitter voltage
             drain-source voltage
V_{\rm DS}
V_{\rm GS}
             gate-source voltage
V_{\mathbf{j}}
             P-N iunction voltage
             open-circuit voltage
V_{\mathsf{P}}
             pinch-off voltage
V_{\rm SS}
             FET supply voltage
             threshold voltage
V_{+}
             positive supply voltage
             negative supply voltage
             amplifier noise voltage
v_{NA}
             base noise voltage
v_{
m NB}
             output noise voltage
v_{NO}
             resistor noise voltage
v_{
m NR}
             signal voltage
v_{\rm S}
W
             watt, unit of power
X
             reactance
Y
             admittance
\boldsymbol{z}
             impedance
(+)
             non-inverting input terminal
(-)
             inverting input terminal
             alpha, collector to emitter current ratio
α
В
             beta, feedback factor
\beta_0
             d.c. current gain
             delta, secondary electron emission ratio
δ
             epsilon, permittivity
3
             permittivity of free space, 8.854 \times 10^{-12} F/m
\epsilon_0
             zeta, damping factor
ζ
```

```
\eta eta, quantum efficiency \lambda lambda, wavelength \mu mu, permeability \mu_0 permeability of free space, 1\cdot257\times10^{-6} H/m \mu prefix micro, 10^{-6} tau, time constant \omega omega, angular frequency \omega_{\rm T} transition frequency
```

Mathematical symbols

Яe

```
greater than
           much greater than
>>
 <
           less than
           much less than
«
           equals
=
           approximately or very nearly equals
÷
≈
           of the order of
           tends to, becomes
<>
           the average value of
           negation, in logic signals
| |
           modulus or absolute value of
ð
           partial differential
δ
           a small increment
Δ
           a small change or increment
exp
           exponential
           square root of -1
Im
           imaginary part of a complex number
```

real part of a complex number

1 6 h

Contents

Pref	ace	xi		
Preface Notation Review of basic circuit theory 1.1 Ohm's law and all that 1.2 Network theorems 1.3 Phase and frequency response 1.4 Time constants, bandwidth, and pulse response 1.5 Impedance matching 1.6 Feedback 1.7 Grounding, loops, and guards 1.8 Noise 1.9 Basic diode and transistor characteristics 1.10 Some IC arrangements 1.11 Laplace transforms 2 Operational amplifiers 2.1 Introduction 2.2 The ideal amplifier and the virtual ground 2.3 Classes of operational amplifier				
1	Review of basic circuit theory	1		
1.1	Ohm's law and all that	1		
1.2	Network theorems	9		
1.3	Phase and frequency response	14		
1.4	Time constants, bandwidth, and pulse response	18		
1.5		23		
1.6	Feedback	26		
1.7	Grounding, loops, and guards	28		
		31		
		36		
		47		
1.11	Laplace transforms	51		
2	Operational amplifiers	68		
		68		
		70		
	Classes of operational amplifier	75		
2.4	Frequency response and stability	81		
2.5	Inverting, summing, non-inverting, and differential amplifiers	82		
2.6	Operational integrator	87		
2.7	Operational differentiator	94		
2.8	Charge amplifier	100		
2.9	IC amplifier characteristics	102		
3	Stability of feedback systems	120		
3.1	Introduction	120		
3.2	The root-locus	120		
3.3	The Nyquist diagram	123		
3.4	The Bode plot	125		

3.5	Phase compensation	128
3.6	12 dB/octave operational amplifiers	136
3.7	Transient response	138
4	Amplifiers	143
4.1	Low noise amplifiers	143
4.2	Differential and instrumentation amplifiers	150
4.3	Logarithmic amplifiers	153
4.4	Active filters	158
4.5	Servo amplifiers and systems	173
4.6	High input impedance and electrometer amplifiers	181
4.7	Audio and servo power amplifiers	188
4.8	Miscellaneous amplifiers	
5	Oscillators	229
5.1	Sinusoidal RC oscillators	229
5.2	Function generators	232
5.3	Relaxation and negative resistance oscillators	239
5.4	Crystal oscillators	249
6	Circuit functions	260
6.1	Comparators and discriminators	260
6.2	Multipliers	268
6.3	Modulators	274
6.4	Phase-locked loop	278
6.5	Sample-hold	283
7	Power supplies	297
7.1	Rectifiers	297
7.2	Voltage regulators	302
7.3	Current regulators	305
7.4	Constant voltage, constant current regulators	308
7.5	Series and parallel operation	309
7.6	Protection and ancilliary circuits	313
7. 7	IC regulators	316
7.8 7.9	Switching regulators Cells and batteries	319
	Voltage and current regulator diodes	322 325
8	Circuit devices	2.42
		342
8.1 8.2	Field-effect transistors Voltage-controlled resistors and switches	342
8.3	Thyristors	349 355
J.J	AMJINOTO	100

9	Optoelectronics	375
9.1	Light units and measurement	375
9.2	Photodiodes and phototransistors	378
9.3	Photoresistors	383
9.4	Photomultipliers	385
9.5	Lamps and light-emitting diodes	394
9.6	Optoelectronic couplers	399
9.7	Miscellaneous opto devices	402
10	Signal detection	419
10.1	Signals and noise	419
10.2	Lock-in or coherent detection	420
10.3	Signal averaging	424
10.4	Correlation	427
11	Applications	436
Bibli	iography	445
Арре	endix: Complex numbers	447
Inde	x	451

1 Review of basic circuit theory

1.1 Ohm's law and all that

The basic circuit relation is Ohm's law which states that the current, I, in a conductor is proportional to the voltage, V, between its terminals:

$$V = IR \quad \text{(volts = amps × ohms)}$$
 (1.1.1)

with the proviso that the constant of proportionality R, the resistance, is not dependent on factors such as temperature, time or, more directly, voltage or current. These conditions are often not met, so that although a resistance can be determined for a particular V and I, a different value will be found if either or both are changed. In normal circumstances, most commonly used conductors and resistors are assumed to have constant resistance (i.e., to be linear) for the sake of circuit analysis, but in critical situations these factors must be considered. Notwithstanding its apparent simplicity, Ohm's law is often all that is needed to analyse the quiescent conditions in circuits.

The current flowing in a resistor dissipates energy, the rate of dissipation or power being given by:

$$P = IV = I^2R = V^2/R$$
 watt (1.1.2)

If there are reactive elements in the circuit and V and I are varying with time, then this relation must be modified (see Eq. (1.1.14)), or I and V more particularly defined. The energy dissipated in this way heats up the resistor, and is largely lost to the system since a resistor cannot store electrical energy as can a reactive element. There is a small usually undesirable return in that the noise power is increased by the increased temperature (see Sec. 1.8). The random signal due to this noise is not of significance in terms of the circuit analysis, although it is of course of considerable importance in other respects (chapter 3 and Sec. 4.1).

In measuring the efficiency or amplification of a system the ratio of two powers is taken. These ratios often span a large range and arise from several stages of gain. It is then convenient to use a logarithmic scale to compress the range, and to allow gains of individual stages to be added rather than multiplied to give the overall value. The logarithm to base 10 of the power ratio is measured in a unit called after Bell although, in practice, one-tenth of this, the decibel (dB), is used:

Power gain or ratio
$$G_P = 10 \log_{10} (P_1/P_2) dB$$
 (1.1.3)

so that if we have a series of amplifiers with power gains G_{P1} , G_{P2} , etc., then the

overall gain is:

$$G = G_{P1} \times G_{P2} \times \cdots \times G_{Pn}$$
 or
$$G_{P} = G_{P1} (dB) + G_{P2} (dB) + \cdots + G_{Pn} (dB)$$
 (1.1.4)

If the input and output resistances are specified then Eq. (1.1.3) can be written in terms of V and R using Eq. (1.1.2). For equal resistances:

$$G_{\rm P} = 10 \log (V_1^2/V_2^2) = 20 \log (V_1/V_2)$$
 (1.1.5)

The convenience of the logarithmic scale has led to its use for voltage or current ratios, as in Eq. (1.1.5), which is legitimate enough, but the unit used is still the dB,

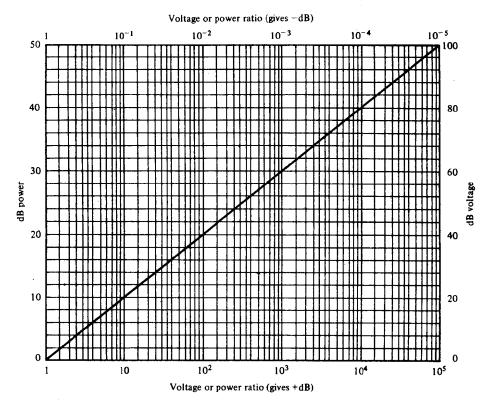


Fig. 1.1.1 Conversion of voltage and power ratios to dB

which is strictly not correct [n1, o1]. However, so long as we specify voltage or power gain there should be no confusion. For example a gain of 60 dB means a power ratio of 10^6 (1.1.3) but a voltage ratio of only 10^3 (1.1.5). Since $\log{(P_1/P_2)} = \log{(P_1)} - \log{(P_2)}$, then if $P_1 > P_2$ (i.e., gain) we get +X dB say, while if $P_1 < P_2$ (i.e., loss or attenuation) we get -Y dB say. The latter is stated as a 'gain' of -Y dB, a loss of Y dB, or the output is said to be Y dB down on the input. For example, the most frequently quoted value is ± 3 dB which corresponds to a voltage gain of $\sqrt{2} = 1.414$ or an attenuation of $1/\sqrt{2} = 0.707$. Conversions may readily be made using Table 1.1.1 or Fig. 1.1.1.

Table 1.1.1 Conversion of power and voltage ratios to dB

ratio 1 0-989 0-977 0-966 0-955 0-944 0-933 0-923 0-912 0-902 0-891 0-881 0-871 0-861 0-851 0-841 0-832 0-822 0-813 0-804 0-794 0-785 0-776 0-767 0-767 0-759 0-751 0-741 0-733 0-724 0-716	Power ratio 1 0-977 0-955 0-933 0-912 0-891 0-871 0-851 0-832 0-813 0-794 0-776 0-759	0 01 02 03 04 05 06 07 08	Voltage ratio 1 1-012 1 023 1-035 1-047 1-059 1-072 1-084	Power ratio 1 1-023 1-047 1-072 1-096 1-122	Voltage ratio 0·519 0·513 0·507 0·501	Power ratio 0·269 0·263 0·257	5·7 5·8 5·9	Voltage ratio	Power ratio
0-989 0-977 0-966 0-955 0-944 0-933 0-912 0-902 0-891 0-881 0-871 0-861 0-851 0-851 0-841 0-832 0-822 0-813 0-804 0-794 0-785 0-766 0-767 0-755 0-751	0-977 0-955 0-933 0-912 0-891 0-871 0-851 0-832 0-813 0-794 0-776	0·1 0·2 0·3 0·4 0·5 0·6 0·7	1·012 1·023 1·035 1·047 1·059 1·072	1·023 1·047 1·072 1·096 1·122	0·513 0·507 0·501	0·263 0·257	5.8		3.715
0-977 0-966 0-955 0-944 0-933 0-923 0-912 0-891 0-881 0-871 0-861 0-851 0-841 0-832 0-822 0-813 0-804 0-794 0-785 0-776 0-767 0-759 0-75 0-741 0-733 0-724 0-716	0.955 0.933 0.912 0.891 0.871 0.851 0.832 0.813 0.794 0.776	0·2 0·3 0·4 0·5 0·6 0·7 0·8	1 023 1 035 1 047 1 059 1 072	1·047 1·072 1·096 1·122	0·507 0·501	0.257			2113
0.966 0.955 0.944 0.933 0.923 0.912 0.902 0.891 0.881 0.871 0.861 0.851 0.841 0.832 0.822 0.822 0.813 0.804 0.794 0.785 0.776 0.767 0.759 0.759 0.759 0.741 0.733 0.724 0.716	0.933 0.912 0.891 0.871 0.851 0.832 0.813 0.794 0.776	0·3 0·4 0·5 0·6 0·7 0·8	1·035 1·047 1·059 1·072	1·072 1·096 1·122	0.501		5.0	1.95	3.802
0.955 0.944 0.933 0.923 0.912 0.902 0.891 0.881 0.871 0.861 0.851 0.841 0.832 0.822 0.822 0.813 0.804 0.794 0.785 0.776 0.767 0.759 0.759 0.741 0.733 0.724 0.716	0.912 0.891 0.871 0.851 0.832 0.813 0.794 0.776	0·4 0·5 0·6 0·7 0·8	1·047 1·059 1·072	1·096 1·122			27	1.972	3.89
0-944 0-933 0-923 0-912 0-902 0-891 0-881 0-871 0-861 0-851 0-841 0-832 0-822 0-813 0-804 0-794 0-785 0-776 0-767 0-759 0-759 0-741 0-733 0-724 0-716	0·891 0·871 0·851 0·832 0·813 0·794 0·776	0·5 0·6 0·7 0·8	1·059 1·072	1.122	A 40.5	0.251	6	1.995	3 ·981
0-933 0-923 0-912 0-902 0-891 0-881 0-881 0-881 0-851 0-841 0-832 0-822 0-813 0-804 0-794 0-785 0-776 0-767 0-759 0-759 0-741 0-733 0-724 0-716	0·871 0·851 0·832 0·813 0·794 0·776	0·6 0·7 0·8	1.072		0.495	0.245	6.1	2.018	4.074
0.923 0.912 0.902 0.891 0.881 0.871 0.861 0.851 0.841 0.832 0.822 0.813 0.804 0.794 0.785 0.776 0.767 0.759 0.759 0.759 0.751 0.733 0.724 0.716	0·851 0·832 0·813 0·794 0·776	0·7 0·8			0.49	0.24	6.2	2.042	4.169
0.912 0.902 0.891 0.881 0.871 0.861 0.851 0.841 0.832 0.822 0.813 0.804 0.794 0.785 0.776 0.767 0.767 0.759 0.759 0.751 0.741 0.733 0.724 0.716	0·832 0·813 0·794 0·776	0.8	1-(1×4	1.148	0.484	0.234	6.3	2.065	4.266
0-902 0-891 0-881 0-871 0-861 0-851 0-841 0-832 0-822 0-813 0-804 0-794 0-785 0-767 0-767 0-767 0-759 0-75 0-741 0-733 0-724 0-716	0·813 0·794 0·776			1.175	0.479	0.229	6.4	2.089	4.365
0.891	0·794 0·776	0.9	1.096	1.202	0.473	0.224	6.5	2.113	4.467
0.881 0.871 0.861 0.851 0.841 0.832 0.822 0.813 0.804 0.794 0.785 0.767 0.767 0.759 0.759 0.741 0.733 0.724 0.716	0.776		1.109	1.23	0.468	0.219	6.6	2.138	4.571
0.871		1	1.122	1.259	0.462	0.214	6.7	2-163	4.677
0.861 0.851 0.841 0.832 0.822 0.822 0.813 0.804 0.794 0.785 0.776 0.767 0.759 0.759 0.741 0.733 0.724 0.716		1·1 1·2	1·135 1·148	1.288	0.457	0.209	6.8	2.188	4.786
0.851	0.741	1.3		1·318 1·349	0.452	0.204	6.9	2.213	4.898
0.841	0.724	1.4	1·161 1·175	1.349	0.447	0.2	7	2.239	5.012
0.832	0.708	1.5	1.188	1.38	0.442	0.195	7-1	2.265	5.128
0.822 0.813 0.804 0.794 0.785 0.776 0.767 0.759 0.759 0.741 0.733 0.724 0.716	0.692	1.6	1.202	1.445	0.437	0-191	7.2	2.291	5.248
0.813 0.804 0.794 0.785 0.776 0.767 0.759 0.759 0.741 0.733 0.724 0.716	0.676	1.7	1.216	1.443	0.432	0.186	7.3	2.317	5.37
0.804 0.794 0.785 0.776 0.767 0.759 0.759 0.741 0.733 0.724 0.716	0.661	1.8	1.23	1.514	0·427 0·422	0·182 0·178	7.4	2.344	5.495
0.794 0.785 0.776 0.767 0.759 0.75 0.741 0.733 0.724 0.716 0.716	0.646	1.9	1:245	1.549	0.422		7.5	2.371	5.623
0.785 0.776 0.767 0.759 0.75 0.741 0.733 0.724 0.716	0.631	2	1.259	1.585	0.417	0·174 0·17	7·6	2.399	5.754
0.776 (0.767 (0.767 (0.759 (0.759 (0.751 (0.753 (0.7741 (0.7733 (0.7724 (0.716	0.617	21	1.273	1.622	0.412	0·17 0·166	7·7	2.427	5.888
0.767 (0.759 (0.759 (0.759 (0.741 (0.733 (0.724 (0.716 (0.	0.603	2.2	1.288	1.66	0.407	0.162	7·8	2.455	6.025
0.759 0.75 0.741 0.733 0.724 0.716 0.716	0.589	2.3	1.303	1.698	0.398	0.162	7.9	2.483	6.166
0·75 0 0·741 0 0·733 0 0·724 0 0·716 0	0.575	2.4	1.318	1.738	0.394	0.138	8	2.512	6.309
0·741 0 0·733 0 0·724 0 0·716 0	0.562	2.5	1.334	1.778	0.389	0.151	8·1 8·2	2·541 2·57	6.456
0·724 (0·716 (0.55	2.6	1.349	1.82	0.385	0.131	8.3	2.6	6.607
0.716	0.537	2.7	1.365	1.862	0.38	0.145	8.4	2.63	6·761 6·918
	0.525	2.8	1.38	1.905	0.376	0.141	8.5	2.661	7.079
	0.513	2.9	1.396	1.95	0.372	0.138	8.6	2.691	7.244
	0.501	3	1.413	1.995	0.367	0.135	8.7	2.723	7:413
	0.49	3.1	1.429	2.042	0.363	0.132	8.8	2.754	7.586
	0.479	3.2	1.445	2.089	0.359	0.129	8.9	2.786	7.762
	0.468	3.3	1.462	2.138	0.355	0.126	9	2.818	7.943
	0.457	3.4	1.479	2.188	0.351	0.123	9.1	2.851	8.128
	0.447	3.5	1.496	2.239	0.347	0.12	9.2	2.884	8.317
	0.437	3.6	1.514	2.291	0.343	0.117	9.3	2.917	8.511
	0.427	3.7	1.531	2.344	0.339	0.115	9.4	2.951	8.709
	0.417	3.8	1.549	2.399	0.335	0.112	9.5	2.985	8.912
	0·407 0·398	3.9	1.567	2.455	0.331	0.11	9.6	3.02	9.12
	0·398 0·389	4	1.585	2.512	0.327	0.107	9.7	3.055	9.332
	0·389	4·1 4·2	1.603	2.57	0.324	0.105	9.8	3⋅09	9.55
0.61	0·372	4.3	1.622	2.63	0.32	0.102	9.9	3.126	9.772
	0.363	4.3	1.641	2.691	0.316	0.1	10	3.162	10
	0·355	4.5	1·66 1·679	2.754	0.313	0.098	10-1	3.199	10.232
	0·333 0·347	4·5 4·6	1.698	2.818	0.309	0.096	10.2	3.236	10.471
	0.339	4·7	1.718	2.884	0.305	0.093	10.3	3.273	10.715
	0·331	4.8	1.738	2·951 3·02	0.302	0.091	10.4	3.311	10.964
)·324	4.9	1.758	3·02 3·09	0.299	0.089	10.5	3.35	11-22
	0.316	5	1.778	3·162	0.295	0.087	10.6	3.388	11.481
	0.309	5-1	1.799	3.236	0·292 0·288	0.085	10.7	3.428	11.748
)-302	5.2	1.82	3.311	0·288 0·285	0.083	10.8	3.467	12.022
)-295	5.3	1.841	3.388	0.282	0.081	10.9	3.507	12.302
)-288	5.4	1.862	3.467	0·282 0·279	0.079	11	3.548	12.589
		5.5	1.884	3.548	0.279	0.078	11-1	3.589	12.882
0.525 0)·282	5.6	1.905		V'213	0.076	11.2	3.631	13-182

Table 1.1.1, continued

Gives -dB		dB	Gives +dB		Gives -dB		dB	Gives +dB	
Voltage ratio	Power ratio	-	Voltage ratio	Power ratio	Voltage ratio	Power ratio	•	Voltage ratio	Power ratio
0.269	0.072	11.4	3.715	13.803	0.162	0.026	15.8	6.166	38.016
0.266	0.071	11.5	3.758	14-125	0.16	0.026	15.9	6.237	38-901
0.263	0.069	11.6	3.802	14-454	0.158	0.025	16	6.309	39.807
0.26	0.068	11.7	3.846	14.79	0.157	0.025	16·1	6.382	40.735
0.257	0.066	11.8	3.89	15.135	0.155	0.024	16.2	6.456	41.683
0.254	0.065	11.9	3.935	15.487	0.153	0.023	16.3	6.531	42.654
0.251	0.063	12	3.981	15.848	0.151	0.023	1 6·4	6.607	43.648
0.248	0.062	12.1	4.027	16.217	0.15	0.022	16.5	6.683	44.665
0.245	0.06	12.2	4.074	16.595	0.148	0.022	16.6	6.761	45.705
0.243	0.059	12.3	4.121	16.981	0.146	0.021	16.7	6.839	46.769
0.24	0.058	12-4	4.169	17-377	0.145	0.021	16.8	6.918	47-859
0.237	0.056	12.5	4.217	17.782	0-143	0.02	16.9	6.998	48.974
0.234	0.055	12.6	4.266	18-196	0.141	0.02	17	7.079	50-114
0.232	0.054	12.7	4.315	18-62	0.14	0-02	17-1	7-161	51.282
0.229	0.052	12.8	4.365	19-053	0.138	0.019	17.2	7.244	52-47
0.226	0.051	12.9	4.416	19.497	0.136	0.019	17.3	7-328	53.698
0.224	0.05	13	4.467	19-951	0.135	0.018	17.4	7.413	54-94
0.221	0.049	13-1	4.518	20.416	0.133	0.018	17.5	7.499	56-229
0.219	0.048	13.2	4.571	20-892	0.132	0.017	17.6	7.585	57-539
0.216	0.047	13.3	4.624	21.378	0-13	0.017	17.7	7.673	58-879
0.214	0.046	13.4	4.677	21.876	0-129	0.017	17.8	7.762	60.25
0.211	0.045	13.5	4.731	22.386	0-127	0.016	17-9	7.852	61.65
0.209	0.044	13.6	4.786	22.907	0.126	0.016	18	7.943	63.09
0.207	0.043	13.7	4.842	23.441	0.124	0.015	18-1	8.035	64.55
0.204	0.042	13.8	4.898	23.987	0.123	0.015	18-2	8-128	66.06
0.202	0.041	13.9	4.954	24-545	0-122	0.015	18-3	8-222	67.60
0.2	0.04	14	5.012	25-117	0.12	0.014	18-4	8.317	69.17
0.197	0.039	14-1	5.07	25.702	0.119	0.014	18.5	8.414	70.78
0.195	0.038	14.2	5.128	26.301	0.117	0.014	18.6	8.511	72.43
0.193	0.037	14.3	5.188	26.913	0.116	0.013	18.7	8.61	74.12
0.191	0.036	14.4	5.248	27.54	0.115	0.013	18.8	8.709	75.85
0 188	0.035	14.5	5.309	28.182	0.114	0.013	18.9	8.81	77-61
0.186	0.035	14.6	5.37	28.838	0.112	0.013	19	8.912	79.42
0.184	0.034	14.7	5.432	29.51	0.111	0.012	19-1	9.015	81.27
0.182	0.033	14-8	5.495	30-197	0.11	0.012	19.2	9.12	83-168
0.18	0.032	14.9	5.559	30-901	0.108	0.012	19.3	9.225	85.10
0.178	0.032	15	5.623	31.62	0.107	0.011	19.4	9.332	87.08
0.176	0.031	15.1	5.688	32.357	0.106	0.011	19.5	9.44	89-110
0.174	0.03	15.2	5.754	33-111	0.105	0.011	19.6	9.549	91.19
0.172	0.03	15.3	5.821	33.882	0.104	0.011	19.7	9.66	93.316
0.17	0.029	15.4	5.888	34.671	0.102	0.01	19.8	9.772	95.489
0.168	0.028	15.5	5.956	35.479	0.101	0.01	19.9	9.885	97.71
0 166	0.028	15.6	6.025	36-305	0.100	0.01	20.0	10.0	100.0
0164	0.027	15.7	6.095	37·151	0.00		200	100	1000

If voltage and current are varying with time then Ohm's law must be interpreted more carefully. The instantaneous ratio of voltage to current is not constant but varies over an infinite range, unless the circuit contains purely resistive elements. If inductance or capacity is included energy may be stored, so that the current depends not only on the instantaneous voltage but also on all that happened before. In terms of alternating or sinusoidal voltages there will be a phase difference between the voltage and current, and it is only the averages over a cycle (r.m.s. values), or the peak values that will satisfy Ohm's law, although the effective 'resistance' may not be a purely real number [a1].