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PREFACE

The purpose of this book is to present a treatment of the thermal
vibrations of crystalline solids and of their effects on the '
" spectra of these materials. Crystalline solids present spectra
whose frequency distribution reflects the structure of their
energy levels. This structure becomes manifest in absorption
spectra every time the frequency of the incoming light is in
"resonance" with one of the energy levels of the system; in emis-
sion, the spectral distribution also reflects the energy spacings
of the system. It is_ also possible to derive spectral informa-
tion by using scattering experiments where the incoming photon or
‘neutron, by passing through’ the system, experiences a‘variation
of its enerqgy in accordance with a quantum of excitation in the
solid.

In general, the energy levels of a splid may arise from a col-
lective excitation of all the atoms or from localized centers;
.also, they can be determined mainly by the electrons or by the
thermal vibrations of the atoms. In general, excitations of Qif-
ferent types (say, electronic or vibfational) occur in different
spectral regions, so that they may be -studied separately; in some
other cases, for example, in the case of vibronic transitions,
both electronic and vibrational excitation play a role ‘in the
radiative process.

In order to gtudy the spectrum of a solid the researcher uses -
probes (likg a beam of light, a beam of neutrons) that interact
with the constituents of the crystal. Experimental investigations
may be directly pointing to the measurement of vibrations using
such varied techniques as infrared absorption; Raman andnxlllouln
scattering, and neutron scattering. Other experiments may deal
with optical spectra, and be strongly affected by the presence of
.thermal vibrations (to the point that they may even provide some
relevant information about these vibrations) .

In other words, a researcher. may face two different types of
problems .

vii



viii Preface

1. He makes the thermal vibrations the object of his study.
He uses spectroscopic techniques to 1nvestigate the phonon
spectrum of the solid.

2. He wants to understand how thermal vibrations affect his
results. '

This book is addressed to both types of approaches to the re-
search in this field and may be of great interest not only to
researchers in the field of solid-state spectroscopy but also to
students and teachers of solid-state physics. -

There are, of course, other thermal effects in solids that are
not closely related to spectral data and will not be treated here.
. For example, thermal transport properties and interaction of pho-
nons with charge carrlers in metals and semiconductors are two.
areas that have been the subject of extensiye investigation and
have already been treated in detail in the literature.

The present treatment proceeds along the following lines:

1. The Introduction (Chapter I) sets the stage for the entire
book by treating the Hamiltonian of a crystalline solid, intro-
ducing the adiabatic approximation, and considering the conse-
quences of this approximation on the role that symmetry plays.

2. Since solids are ardered arrays of atoms, their symmetry -
properties are intimately related to their physical properties. A
study of the symmetries of crystals is then essential for an
understanding of their properties, in particular of their spectra.
This study is carried out in Chapters 2-4.,

3. The thermal vibrations of a solid are the next subject of
this study. ‘ Both their theoretical treatment (Chapters 5 and 6)
and some of the experimental teehniques used to investigate them
(Chapters 7 and 8) are considered.

4. The next subject of this study is the ‘interaction of radi-
ation with -matter (Chapter 9), which produces optical spectra in
the presence of impurities (Chapters 10 and 11} or infrared
absorption and Raman Scattering (Chapter 12), when the radiation
interacts with the vibrations of that solid. '

The content of this boock could be the subject of.a two-térm
graduate course on solid-state physics. It presupposes the
equivalent of one year of study of quantum mechanics. Although
group theory is used throughout the book, no previous knowledge
of this subject is reguired:

One of the authors (B. Di Bartolo) wishes to acknowleége the
help and assistance received from the Chairpan of the Department
of Physics of Boston College, Professor R. L. Caroviliano and the
benefit of discussions with his former graduate students, Dr.
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James T. Karpick, Qr. J. M. Flaherty, and Mr. D. Pacheco and sev-
eral other graduate and undergraduate students met through his-
teaching assignments at Boston College. In particular he wishes
to acknowledge the great benefit he received from discussing in
detail several aspects of this book with his former student, Dr.
W. A. Wall. A}lso one of the authors (R. C. Powell) wishes to
acknowledge the benefit of many helpful discussions with Professor
W. A. Sibley, Head of the Department of Physics, Oklahoma State
University.
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I |
INTRODUCTION

1.1 THE HAMILTONIAN OF A CRYSTALLINE SOLID

A crystalline solid is an ordered arrxay of atoms bound together.
The Hamiltonian of such a system that includes n electrons and N
nuclei is given by :

2 2
: n gl N ga' .
H o= L ==+ I =2 4+ vV(,,R) S (1.1
1= - e i«

1 2m a=1 2M
o

where m is the mass of the electron, M is the mass of the ath
nucleus, Ei is the. position coordinate of the ith electron, pi is
the linear momentum of the ith electron, R is the position coor-

dinate of the ath nucleus, and P is the linear momentum of the
ath nucleus. Also @

(R) = Vv + VvV + Vv (1.1.2)

V(Ei ~a ee nn ne
where
2
n n
Vee = % ik j§1|e |
i#jy Ql‘Ej
2
1 Ig b;:eZZB
v o= =
= =1 -
nn 2 a la#BB IBa ”Bl
2



2 Introduction

The Schrédinger equation of the system is given by

HY(r.,R) = E¥(r,,R) (1.1.3)
1 a 1 a .

where the Hamiltonian operator H is expressed as follows:

v 2
’ L 2 ] N X
w b1 i T 7 ehrEm M * ViR (1.1.4)

H = -
Therefore the eigenfunctions and the eigenvalues of the system.
are given by .

o
2m i

2 4
V. ¥ - )

1Y% V' ¥+vw = EY (1.1.5)

et 33

In order to solve the above SChrBdlnger equation we seek’ solu-
tions of the type

Using (1 1. 6) in (1.1. 5) we obtaln, dropplng the subscrlpts i and
a,

#2 ' 2 N V

v—¢m)§ v.% R - % 3 ® R
j=1 vy ¥ (Z.R T oi1 M ¢ (R) ¥(r,R)
C+V(L,R) $(R) V(Z,R) = EG(R) V(r,R) C(1.1.7)
But
2 ’ , 2 | - 2
PR VR = 4R VT W(R + VLR Y 6®)
+ 29 $(R) - ¥ $(z,R) (1.1.8)
Then
N o4 _ N 42
"ok i ¥ o B LVER - E T Ty B® Y Ae,R)
N g2 nﬁz‘z
VR 5T % ® - em) I 3 Y V@R

+w§@¢@)wg@ = E¢$(R) ¥(L,R) (1.1.9)



1.1 The Hamiltonian of a Crystalline Solid 3

We will assume that

2 :
1 2 N 4 2
" okl M [Y ¢ =LY+, W]I«I- v I ) v %] a.1.10)

We shall return to the validity of this assumption later. Because
of (1.1.10), (1.1.9) becomes

_t2y N

3% ol M Vu 6 +] - LI V + V(g,l})]\b =Ey. (1.1.11)

2m i=1

The operator in the square brackets on the.left-hand gide of
(1.1.11) represents the Hamiltonian for the gystem if the nuclei
are dssumed to be fixed in space. We call this Hamiltonian He:

a2 n o
Hy = =50 45 V5 + V@R (1.1.12)

The corresponding eigenfunctions and eigenvaiues are given by the
Schr8dinger equation, 2

2 n 2 .
“om 15 Yy v &R+ VKR VKR =e®VI(,R) 0 (1.1.13)

Replacing (1.1.13) in (1.1.11) we obtain

S S R $(R) + e(R) $(R) = EB(R) (1.1.14)
2 a=]l Md o ~ B ~ ~ ol .

The solution of the Schrddinger equation (1.1.3) reduces then to
the solution of the two equations (1.1,13) and (1.1.14); we now
rewrite this solution with the proper subscripts as follows:

2 .
f n 2 .
T o il Vi W (R VLR g (R = e (R) ¥ (£,R) (1.1.15)
fgz N 1 ) ) . ' .
-7 ok n o v 4’1«1 (B} + € (R) ,*151 B = Epy b B (1.1.16)

A stationary state of the system will be represented by the eigen-
function

YR = (DR (R o aaan



4 Introduction

where‘wk(g,g) and ¢k1(g) are eigenfunctions of the Hamiltonians

B2 1.1.18
He = = 3;- iEl Vi + V(E,B) (1.1.18)
and
2 N y 2
H = -2 1 % ,¢(ry, (1.1.19)
v 2 a=l M k-~ ,
[o)
respectively.

1.2 THE ADIABATIC APPROXIMATION

Let us consider now in detail equations (1.1.15) and (1.1.16).
Equatdion (1.1.15) is an eigenvalue equation whose eigenfunctions
represent the motion of the electrons in the crystal when the
nuclei are kept fixed in space. The energy eigenvalues of
(1.1.15) depend parametrically on the nuclear coordinates. Equa-
tion (1.1.16) is an eigenvalue equation whose eigenfunctions rep-
resent the motion of the nuclei in the crystal. In the Hamilton-
ian (1.1.19) for nuclear motion, the energy qk(g), which is a .
function of the nuclear coordinates regarded as parameters, plays
the role of the potential energy for nuclear motion. This poten-
tial energy ek(g) is an eigenvalue of (1.1.15) and, as such,
depends on the quantum number k. The eigenfunction ¢ (R) also
depends on k; however, k does not play the role of a quantum num-
ber for ¢(R) even if it is used as one of its subscripts. There-
fore the functions ¢kl(§) and ¢k,l(g) with k' # k are not

mutually orthogonal. .
We now retumn to the approximation (1.1.10) and discuss its
physical meaning. The implication of (1.1.10) is that the func-

tion ¢ (x,R), which represents the motion of the electrons, is a
function that varies slowly with the nuclear coordinates, so that
[2a¢(;,3)| is much smaller than |2u¢(g)|. In pictorial terms we

may say that this is the case sinceé the electrons, having much
smaller masses than the nuclei, go through their orbits many
times before the nuclei have shifted from their equilibrium posi-
tion by any congiderable distance.

In the light of this fact the approximation (1,1.10}, which
has allowed us to express the eigenstates of the system in the
product form (1.1.6), is called the adiabatic approximation. It
is also called sometimes the Born-Oppenheimer approximation.l



1.3 The Role of Symﬁetry 5

The implications of the adiabatic approximation are far reach-
ing. We .are now in the position of treating the electrons and
the nuclei independently, we will, however, keep in mind that we
are allowed to dc so only within the limits of validity of the
adiabatic approx1mat10n. :

1.3 THE ROLE OF SYMMETRY

The quantum-mechanical treatment of a physical system implies
generally the solution of a Schrddinger equation., This solution
gives the energy eigenvalues and the eigenfunctions of the
Hamiltonian. In general the eigenfunctions. are degenerate; that
is, several of them correspond to the same energy eigenvalue.
The degeneracy and the transformation properties of the eigen-
functions are closely related to the symmetry properties of the
Hamiltonian; indeed, both degeneracy and transformation proper-
ties can be derived from the knowledge of symmetries.

Before considering these symmetries for the case of a crystal-

line solid, it is worthwhile to review some basic concepts re-
garding coordinate transformations. 1In particular we are con-
cerned with those transformations that leave the distance between
two points unchanged. The most general transformation of this
type can be expressed by the symbol {R|t} and involves a rota-
tional operation R followed by a translation t. A position vec-
tor x, when acted upon by {R[t} becomes

:5' = RX + t (1.3.1).
with
', = R + + +
X1 1w T Rp¥y PR Y
[ + -3.
x2 R2lxl R22x2 + 1‘{23x3 + t2 (1.3.2)

+ +
Ra1%; R32"2 + Riz¥3 + &

L]
*3

R is a 3 x 3 real orthogonal matrix: if its determinant is
+1, the rotation is called proper; if its determinant is -1, the
rotation is called improper.

A pure rotation is indicated by {R|Q} and a pure translation
by {E[t}. The identity operation is represented by {EIQ}

If two operatiéns {R ]t'} and {R |;'Q act in succession upon a
vector X, the result 1s

x' = Ry +t' : (1.3.3)

1



