xetEnasEszzazs (BSEDRR)

Itanium Architecture

for Programmers
Understanding 64-Bit Processors
and EPIC Principles

EPICEE &

James S. Evans
Gregory L. Trimper

i

AERF AL

Nl el BB S B ol ool HI". -

IEmeninarm Sk board
For oy s el

I el B ey Pl g e
e BT gl

TR R
it oL

EFICA®

AFUENHFEINIFLHM R (BAK)

Itanium Architecture for Programmers
Understanding 64-Bit Processors and EPIC Principles

Z2ERKR RSN

IRfE 64 ALIRERFN EPIC [F3E

James S. Evans
Lawrence University
Gregory L. Trimper
Viika

English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Itanium Architecture for Programmers: Understanding 64-Bit Processors and EPIC
Principles by James S. Evans, Gregory L. Trimper, Copyright © 2003
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall, PTR.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

F AL EIRX M Pearson Education (¥AEHH HISER) FAABHERE MR BRET.

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).
RFhEARKMEEN (FOFEPESEE. RITENITHRG
EETHX) HELT.

ERTIREEFENEREILS BF 01-2003-6381

FHHMEMEE Pearson Education (G54 £ & HAREF) MABH HIFE, TIRTEREHE.
BEHEMRE (CIP) ¥iiE

RBRREH: B 64 (IALIEEM EPIC [= Itanium Architecture for Programmers: Understanding 64-Bit
Processors and EPIC Principles / () R (Evans, J.S.), (JO) $#R /R (Trimper, G. L.) ¥, —ZENA.
—Ibe: HHEKEHR, 20045

CREFWHEIET EIZE L EMERET)D
ISBN 7-302-08486-6

[. % . O O T MR — SR —#M—%r V. TP332
AR A B B CIP H3EZ T (2004) % 033621 2

HE #F: BEXFEREH W bk EREEKEFHRE
http://www.tup.com.cn 21 Hw: 100084
iR (010) 6277 0175 BRBR%: (010) 6277 6969

RITHRIE: JbRds

EP Rl & Jbx4 Lt XEnR

® T & =mWEEEDHET

& 1T &: FEBEREILREITHR

F & 185%x230 EP3K: 35.5

BR R 20045 AE 1R 2004 5 HE 1 RENRI

F £. ISBN 7-302-08486-6/TP - 6092

B ¥ 1~4000

E O 00

ABWFEFAE. WREILURBT. #H. MUSNERBNE, §5HEK% N HAR SRR
WHe, BRRHEIE: (010) 62770175-3103 1§ (010) 62795704

“If you’ve never written assembler before, this book is a good, solid
introduction to a part of computer science you really should know.

If you have written assembler before, and want to learn about
the Itananium instruction set, the authors take a complicated
machine that uses some new ways of doing things, and build up your
knowledge in manageable increments. '

Having the sample assembler code to study and ponder is very
useful—something that’s normally considered pretty esoteric
becomes much more concrete. And, the code actually does useful
things!

As someone who’s been writing assembler off and on for over
20 years, it’s the book I wish I'd learned from.”

—Al Stone, Senior Software Engineer, HP

th e i W

B 21 e, HARENLE. BRURGEEENNEFHENHI. ZHFHFOLE
BEEMAA NS . IEKERRENIAL, ERRERSFTIERNS. m%HE, FH
BFEERAAMEL, PRZHEEEN. HiTREASEEOEM EHRE, Tk
M EFAE, BHHIEAERNNRHRERERAESNERREH .

BEERFLBRIEN 1996 EF78H, SESIFLALRAREHE, BEOHRT “REAFEH
BHEAR BEBD” F—RFI5IHEH, ZRENEERVOBMSRE. BA 21 e, T
FEABRBEHFHEEMERRSOVNE, EOEREMLE, #—PF REEAET, SUEHE
PRAART, — B ERIEFE X ERXREER TRERLAR KR AT ENHENRIE
REMBELHM, ARFE “KRETEYEFTERIZELEM RS GBI, LIAEHE.
EUMIREE PR ERERIIEMORR B LR RERA]. EREEAETEK. HEBIR
[BATHERE BN HH BT RRFH B, UFIBRATE R EHBE R Z LB RF
BRSO A ELR, EEERRITAENTE.

HHE DA

Preface

his book will assist both computer professionals and college-level learners to comprehend

the specific capabilities of the 64-bit Intel® Itanium® architecture, within the wider con-
text of contemporary architectural principles. This is accomplished through a guided investiga-
tion of Itanium assembly language, using standard command-line tools and illustrative
programs.

The Itanium architecture is distinct from previously available architectures. This explicitly
parallel instruction set computer (EPIC) viably introduces a versatile register stack and thorough
use of predication. The stature of its two developers (Hewlett-Packard® and Intel) positions the
new architecture to win widespread acceptance from technical and financial decision-makers.

Design and development of processor architectures is very expensive. Announced consoli-
dations in the industry have pointed to the phase-out of server and graphical scientific worksta-
tion lines based upon three 64-bit RISC designs (Alpham, MIPS®, and PA-RISC®) that have
supported Unix® or Linux® operating systems; those platforms are to be superseded by new
product lines based upon Itanium processors.

Except for the briefly marketed 64-bit version of Windows NT® for Alpha-based systems,
Microsoft® had not promoted 64-bit development for servers. Moreover, Intel had not marketed
a commercial 64-bit platform prior to the Itanium processors. Moore’s law implies that a
switchover from 32- to 64-bit addressing in the much larger consumer and commercial desktop
market is inevitable; indeed, one can install a gigabyte of physical RAM into a high-end note-
book computer, thereby using one-quarter of the 32-bit addressing capability.

This book is the second in a line of works to discuss computer architecture and assembly
language programming for modern 64-bit processors. We have chosen the Itanium architecture
because it represents a thoroughly new approach, and because we anticipate that it will attain
wide commercial and educational adoption. In fact, the Itanium processor line should thrive as a
platform for Microsoft operating systems, Hewlett-Packard’s HP-UX® implementation of Unix,
numerous Linux distributions, and even ports of FreeBSD and OpenVMS ™.

xxvi Preface

In writing this book, we have brought forward the collective teaching and practical experi-
ence from several preceding works:

Eckhouse, Richard H. and L. Robert Morris, Minicomputer Systems: Organization, Program-
ming, and Applications (PDP-11). Englewood Cliffs, N.J.: Prentice Hall, Inc., 1979.

Levy, Henry M. and Richard H. Eckhouse, Computer Programming and Architecture: The
VAX, 2nd ed. Bedford, Mass.: Digital Press, 1989.

Evans, James S. and Richard H. Eckhouse, Alpha RISC Architecture for Programmers. Upper
Saddle River, N.J.: Prentice Hall PTR, 1999.

These prior books built a tradition of discussing the general principles of computer architecture
through a pedagogically tested experience in register-level analysis and programming, using one
specific contemporary architecture each time. In this new book, we continue that tradition by
focusing on the Itanium architecture, contrasting it with other designs as appropriate.

We envision a diverse readership for this book. Computer professionals, especially those
who want to gain familiarity with 64-bit systems, can use it for individual study and reference.
Undergraduate or graduate classes in computer architecture and/or assembly language can use it
as the primary text, or advanced classes in computer science may use it as a supplement. We
have striven to keep both our discussions and many of the suggested exercises to a degree of
transparency that can be worked through with pencil and paper, for we feel that a mature under-
standing of the complex or the subtie is best built on a foundation of confidence in the simple.

Our book is about the design and capabilities of the Itanium architecture from the pro-
grammer’s perspective. Hands-on exposure to command-line programming environments is rec-
ommended and illustrated to make sample programs come alive for the reader. Therefore we
also describe how to work within standard command-line programming environments, princi-
pally HP-UX and Linux.

In a course on computer architecture at Lawrence University, we introduce the first sim-
ple programming illustrations early in a ten-week term. Additional brief demonstration pro-
grams are presented as illustrations during subsequent class meetings, and student
assignments frequently involve adaptations and extensions of such models.

These illustrative programs are available as source text on the Web site associated with this
book, http://www.viika.com/itanium/. As well as being compatible with the HP-UX and Linux
programming environments on Itanium workstations or servers, most of these programs can also
be explored using Hewlett-Packard’s Ski simulator for Itanium architecture, a free download for
32-bit Linux systems as mentioned in Appendix B in this book.

Increasingly powerful techniques for input and output are introduced throughout the
text, beginning with simple debugging techniques and continuing with the use of sequential

files for input and output. A symbolic debugger is introduced and illustrated as a versatile tool
for routine use.

Acknowledgments xxvii

The chapters of this book contain more material than some instructors may be able to
present in their courses, particularly if comparisons among multiple architectures or concepts of
hardware organization are also studied. Chapter 8, on floating-point operations, may be omitted
without loss of continuity, although it is helpful as background for working through Chapter 11.

We know that some would prefer to put a thorough treatment of procedure calls at an ear-
lier point than we do, but this may be chiefly in order to accomplish input/output. We prefer to
use a debugger at first (Chapters 3—6), and introduce procedure calls based on high-level lan-
guage library routines at the end of Chapter 6. We describe details of procedure-calling mecha-
nisms more fully in Chapter 7, after much of the Itanium instruction set and many fundamental
topics—e.g., addressing modes, stacks, and predication—have been discussed. Later, we con-
tinue to develop the principles of register-level programming through examples drawing upon
some of the functions that the C language supplies for input and output.

We have found that exploring machine code produced by high-level language compilers
proves to be remarkably illuminating. Indeed, it is surprising how much overhead may be
required by the incorporation of a high degree of proceduralization in programs. Such “Eureka!”
experiences become rewards for comprehending assembly language and computer architecture.

Chapters 10 and 11 comprise an introductory unit on optimization techniques, first with a
focus on the intrinsic capabilities of the architecture, and then with observations of output from
high-level language compilers. We use the techniques of an experimentalist more than the per-
spective of a theorist when dealing with performance-related concerns. These two chapters rep-
resent a distinctive feature of this book.

The final chapters take up additional topics related to Itanium architecture, including “par-
allel” instructions that can accelerate calculations with data less than 64 bits in width, the provi-
sion for executing applications using 32-bit Intel instructions, and an overview of extensions
added to computer architectures in later implementations.

Each chapter includes a list of related references, both print and electronic, with the caveat
that electronic resources, by their very nature, may vanish without warning.

Exercises vary widely in type (numeric, essay, programming) and degree of difficulty.
Answers or hints for many of them are provided at the back of the book.

Several appendices contain material that is useful for setting up a computer system to uti-
lize the programs in the book, reference material on numerous features of the Itanium architec-

ture, a treatment of the macro capabilities of the GNU assembler for Linux, and an introduction
to inline assemnbly.

Acknowledgments

Many professional colleagues, former students, and associates have cumulatively contributed to
our understanding of computer architecture and thereby to the making of this book. We appreci-
ate their help and encouragement.

xxvili Preface

Some of the teaching examples in our book developed out of ideas from Professor Thomas
L. Naps (University of Wisconsin—Oshkosh), author or co-author of several computer science
texts.

We wish to thank Walter Triebel (formerly of Intel Corporation, now at Fairleigh Dickin-
son University) for first suggesting a project to prepare this book, Richard Eckhouse (University
of Massachusetts—Boston) for hearty endorsement, Barry Levine (School of Biosciences, Uni-
versity of Birmingham) for professional hospitality and enthusiastic encouragement, Joey
Lawrance for energetic advocacy of Linux systems, and Fred Bartels for discussions of peda-
gogy from elementary school through postgr duate levels.

Mike Perman, a regional representative for Prentice-Hall®, kindly provided several refer-
ence books used during the project.

We appreciate having had remote access to two Itanium-based systems, running different
releases of Linux, through the Test Drive program of Compaq® Corporation managed by Tim
Regan.

We especially thank Hewlett-Packard Company (HP) for extensive assistance, without
which we could not have proceeded.

Early encouragement from Mark Gibson (HP Laboratories) led to crucially important
access arrangements: first, with Brian Lynn for secure remote access to a testbed Itanium-based
system at HP Laboratories with both the GNU software development tools and the Intel assem-
bler, C/C++ compiler, and FORTRAN compiler; and second, with Dan Marcek (HP University
Affairs) for indirect access to an Itanium workstation with HP-UX software that had been con-
tributed to the laboratory of Andrea Arpaci-Dusseau at the University of Wisconsin—-Madison.

Later, Dan Marcek also arranged contact with Rick Hank, who provided tests of certain
programs and commands using prerelease HP-UX software. Dan Marcek, Bob Kennedy, and
Vicki Niccum ultimately made available an Itanium workstation to Lawrence University in
direct support of our book project. Rick Hank ensured that we had all Itanium development soft-
ware available from HP.

Initial inquiries to Pat Pekary (publisher of HP Books) led to further contacts in several
directions: with her colleague Walter Bruce, who became our liaison as regards our book being
sponsored in the HP Professional Books series; with Jill Harry and Mark Taub, who became our
principal contacts at Prentice Hall PTR and who recommended our project for a publishing
arrangement; and with several Hewlett-Packard technical professionals for whom we have
developed deep respect and to whom we owe many thanks indeed.

Dale Morris responded to our outlined book proposal with some leads to useful technical
information and with detailed comments that reinforced our confidence in the viability of an Ita-
nium book project. Whenever we have had questions or concerns, Dale and other Hewlett-Pack-
ard professionals have always responded courteously, promptly, and with interest in the success
of our endeavor. We have received graciously offered and very timely help from Eddie Gornish,
Sverre Jarp, Peter Markstein, Marcel Moolenaar, and David Mosberger.

Acknowledgments xxix

Jim Hull (HP Laboratories) ably assisted with a meticulous technical review for the pub-
lisher and forwarded copious suggestions to the authors, most of which we took on board.
Donna Cullen-Dolce coordinated production work on the book for the publisher and coached the
authors through the many steps of the modern publishing process.

Trademarks

o endorsement of any product mentioned in this book is implied by the authors or the
N publisher. Generally we have used the ™ and ® symbols denoting trademark status in the
US only at the earliest occurrence of each trademarked word or phrase in the book.

Macintosh and PowerBook are trademarks of Apple Computer, Inc., registered in the U.S.
and other countries.

BBEdit and TextWrangler are trademarks of Bare Bones Software, Inc.

BSD is a registered trademark of Berkeley Software Design, Inc.

Alpha and OpenVMS are trademarks and Compagq is a registered trademark of Compaq
Computer Corporation in the US and other countries, which later merged with Hewlett-Packard
Company.

Connectix and Connectix Virtual PC are trademarks of Connectix Corporation, many of
whose products were acquired by Microsoft Corporation.

CRAY is a registered trademark of Cray, Inc.

Digital, PDP, and VAX are registered trademarks of Digital Equipment Corporation,
which was acquired by Compaq Computer Corporation, which later merged with Hewlett-Pack-
ard Company.

Hewlett-Packard, HP-UX, and PA-RISC are registered trademarks of Hewlett-Packard
Company.

IEEE is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

Intel386, Intel486, and MMX are trademarks and Intel, Itanium, and Pentium are regis-
tered trademarks of Intel Corporation or its subsidiaries in the US and other countries.

System/36, System/38, and System/360 are trademarks and AS/400, IBM, PowerPC, and
ThinkPad are registered trademarks of International Business Machines Corporation.

I1SO is a registered trademark of the International Organization for Standardization.

xxxt

xxxii Trademarks

Mandrake is a trademark of MandrakeSoft S.A.

Microsoft, MS-DOS, Windows, and Windows NT are registered frademarks of Microsoft
Corporation in the US and/or other countries.

MIPS is a registered trademark of MIPS Technologies, Inc.

Motorola is a registered trademark of Motorola, Inc.

Oracle is a registered trademark of Oracle Corporation.

Prentice-Hall is a registered trademark of Prentice-Hall, Inc.

Red Hat is a registered trademark of Red Hat, Inc. in the US and other countries.

Java, SPARC, Sun, and UltraSPARC are registered trademarks of Sun Microsystems, Inc.
in the US and other countries.

SuSE is a registered trademark of SuSE AG.

UNIX and the “X” device are registered trademarks of The Open Group in the US and
other countries.

Linux is a registered trademark of Linus Torvalds.

Unicode is a registered trademark of Unicode, Inc.

Simics is a trademark and Virtutech is a registered trademark of Virtutech AB.

Other brands or product names mentioned in this book may be trademarks or registered
trademarks of their respective holders and owners. Refer also to the US Patent and Trademark
Office (http://www.uspto.gov/) and to the respective organizations.

CONTENTS

List of Figures
List of Tables
Preface
Acknowledgments
Trademarks

Chapter 1 Architecture and Implementation

1.1
1.2
1.3
14
1.5
1.6

1.7

1.8

Analogy: Piano Architecture
Types of Computer Languages
Why Study Assembly Language?
Prefixes for Binary Multiples
Instruction Set Architectures
The Life Cycle of Computer Architectures
1.6.1 The 32-Bit Intel® Architecture and Its Predecessors
1.6.2 The Alpha™ Architecture and Its Predecessors
1.6.3 The Itanium® Architecture and Its Predecessors
1.6.4 The Naming of Architectures and Implementations
SQUARES: A First Programming Example
1.7.1 C, FORTRAN, and COBOL
1.7.2 Assembly Language for Itanium Architecture
Review of Number Systems
1.8.1 Positional Coefficients and Weights
1.8.2 Binary and Hexadecimal Representations
1.8.3 Signed Integers
Summary
References
Exercises

vii

O 1 1 N v bW N e

[6 R & Ry e e e e T T Y
N O O 0 90O DN NS

viii

Contents

Chapter 2 Computer Structures and Data Representations 25

2.1 Computer Structures

2.1.1

The Central Processing Unit

2.1.2 The Memory
2.1.3 The Input/Output System
2.2 Instruction Execution
2.3 Classes of Instruction Set Architectures
2.4 Migration to 64-Bit Architectures
2.5 Itanium Information Units and Data Types

2.5.1
252
253

Integers
Floatihg—Point Numbers
Alphanumeric Characters

Summary

References

Exercises

Chapter 3 The Program Assembler and Debugger
3.1 Programming Environments

3.2 Program Development Steps

3.3 Comparing Variants of a Source File
3.4 Assembler Statement Types

34.1
342
343

Statement Format
Symbolic Addresses
Classes of Assembly Language Operators

3.5 The Functions of a Symbolic Assembler

35.1
352
353
354
355
3.5.6
3.5.7

Constants

Symbols or Identifiers
Storage Allocation

The Location Counter
Expreessions

Control Statements
Elements of a Listing File

3.6 The Assembly Process
3.7 The Linking Process
3.8 The Program Debugger

3.8.1
382

Capabilities of Debugger Programs
Running SQUARES using gdb (Linux® and HP-UX®)

3.8.3 Running SQUARES using adb (HP-UX)
3.84 Examples of Debugger Commands

26
26
27
29
30
32
34
35
37
37
41
44
45
46

49
50
50
54
54
55
56
56
57
58
58
59
61
62
64
64
66
68
69
71
71
73
74

Contents Ix

3.9 Conventions for Writing Programs 71
Summary 78
References 79
Exercises 80

Chapter 4 Itanium Instruction Formats and Addressing 83

4.1 Overview of Itanium Instruction Formats 84
4.1.1 Instruction Bundles 85
4.1.2 Instruction Bit-Field Layouts 85
4.1.3 Classes of Itanium Instructions 86

4.2 Integer Arithmetic Instructions 88
42.1 Addition and Subtraction 88
422 Arithmetic Overflow 89
4.2.3 Shift Left and Add Instruction 90
424 Special-Case Arithmetic Operations 91
4.2.5 Multiplication of 16-Bit Signed Integers 92
426 Full-Width Multiplication and Division 93

4.3 Bit Encoding for Itanium Instructions 93

44 HEXNUM: Using Arithmetic Instructions 96

4.5 Data Access Instructions 98
4.5.1 Itanium Cache Structures 98
4.5.2 Integer Store Instructions 101
453 Integer Load Instructions 101
4.54 Move Long Immediate Instruction 103
4.5.5 Accessing Simple Record Structures 104
4.5.6 Access to Specialized CPU Registers 105

4.6 Other ALU Instructions 105
4.6.1 Sign-Extend Instruction 106
4.6.2 Zero-Extend Instruction 106
4.6.3 Instructions for Quantities Less Than 64 Bits in Width 107

47 DOTPROD: Using Data Access Instructions 107

4.8 Itanium Addressing Modes 110
48.1 Immediate Addressing 110
4.8.2 Register Direct Addressing 110
4.8.3 Register Indirect Addressing 111
4.8.4 Autoincrement Addressing 1
4.8.5 Summary of Itanium Addressing Modes 111

4.8.6 Addressing Details in Previous Programs 112

4.9 Addressing in Other Architectures 116
49.1 Modes Built on Register Indirect Addressing 116
49.2 Modes Built on Displacement Addressing 117
49.3 Comparison of Modes Across Architectures ‘ 117

Summary 118
References 119
Exercises 119
Chapter 5 Comparison, Branches, and Predication 123

5.1 Hardware Basis for Control of Flow 123
5.1.1 Condition Codes 124
5.1.2 State-Management Approaches 125
5.1.3 Predicate Registers 126

5.2 Integer Compare Instructions 126
5.2.1 Signed Comparison and Equality 127
5.2.2 Unsigned Comparison 128

5.3 Program Branching 129
5.3.1 Ordinary Branch Instructions 130
5.3.2 Timing Considerations for Branches 131
5.3.3 If...Then...Else Structures 131
5.3.4 Loop Structures 134
5.3.5 Branch Addressing Range 135
5.3.6 Locality and Program Performance 136

5.4 DOTLOOP: Using a Counted Loop 136

5.5 Stops, Instruction Groups, and Performance 137
5.5.1 Study of Stops and Groups in DOTLOOP 138
5.5.2 Simplified Rules for Data Dependency 140
5.5.3 How Itanium Assemblers Handle Stops 142
5.5.4 Local Labels for Loops 142
5.5.5 Loops, Branches, and Overall Performance 143

5.6 DOTCLOOQP: Using the Loop Count Register 143

5.7 Other Structured Programming Constructs 145
5.7.1 Unconditional Compare Instructions 146
5.7.2 Nested If... Then...Else Structures . 146
5.7.3 Multiway Branching 147
5.7.4 Simple Case Structures 148

5.8 MAXIMUM: Using Conditional Instructions 150

