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PREFACE

This book‘is intended for an int:>ductory course in vector and ten-
sor analysis. 1In writing the book, the author's objective has been
to acquaint the students with the various fupdaméntal concepts of
vector and tensor analysis together with some of their correspond-
ing physical and geoﬁetric Interpretations, as well as to enable
the students to attain some degree of proficiency in the manipula-
tion and application of the mechanics .and techniéues of- the subject.
Throughout the book, we place qfeat emphasis on intuitive-
understanding as well as geometric and physical illustrations. To
help achieve this end, we have included a great number of examples
drawn from the physical sciences, such as mechanics.lfluid dynamics,
"and electromagnetic theory, although prior knowledge of' these sub- .
jects is not assumed. We stress the developmeﬁt of basic techniques
and computational skills and deliberately de-emphasize highly com-
plex proofs. Teaching experience at this level suggests that highly
technical proofs of theorems are difficult for students and serve
little purpose toward undetstan&inq the significance and implica-
tions of the theorems. Thus we have presented the classical inté-
gral theorems of Green, Gauss, and Stokes only intuitively and in
the simplest geometric setting. At the end of practically every
section, thére are eiercises df varying degrees of difficulty to
test students' comprehension of the subject matter presented and to
make the students prbfibient in the basic computation and techniques
of the subject.




vi . Preface

The book contains more -than enough material for a one-year or
two-quarter course at the junibr or senior level or ‘even at the be-
ginning graduate level for physical sciences majors. Omitting
Secs. 3.9 through 3.12, Chaps. 1 through 4 can serve as material
for a one~semester course in vector analysis, or for a one-quarter
course with further deletion of topics depending on the interest of
the class. Preceded by Secs. 3.9 and 3.11, the material of Chaps.
5 and 6 can then be used for a second-semester or a one-quarter
course in tensor analysis.

As a prerequiéite for a course based on this book, the stu-
dents must be familiar with the usual topics covered in a tradi-
tional elementary calculus course.. Specifically, the students must
know the basic rules of differentiation and integration, such as
‘the chain rule, integration by parts, and iterateg integration of
multiple integrais. Althouéh a knowledge of matrix .algebra would
be helpful, this is not an essential prerequisite. The book re-
quires only the bare rudiments of this subject, and they are sum~ .
marized in the text. .

The author wishes to thank his colleagues Professor Steven L.
Blumsack, Wolfgang Heil, David L. Lovelady, 1and Kenneth P. Yanosko
for reviewing portions of the manuscript aqd Lffering valuable com
ments and suggestions, and Professors Chiu Yeﬁng Chan and Christo-
pher K. W. Tam for testing the material on tensors in their classes
during the developmental.stage of the book. Last but not least, the
author acknowledges with gratitude the assistance rendered by the
production and editorial deparﬁnent of the publisher.

" Butiquio C. Young
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Chapter 1

VECTOR ALGEBRA

1.1 INTRODUCTION

In the study of physics, we encounter quantities such as volume and
temperature, which can be described by the specification of- their
magnitude alone in terms of some apprbpriate units. For example,
the volume of a cube can be described'by the number of cubic inches,
and the temperature at a particular time of a day can be described
by giving the number of degrees on a Fahrenheit scale. Such quan-
_tities characterized by the fact that they have magnitude only are
called scalar quantities, and they are represented by real numbers
{also called sca}ars). On the other hand, there are other physical
quantities such as displacement, force; velocity, and acceleration
which cannot be described by single numbers. These quantities pos-
sess not only magnitude but also direction so that a complete de-
scription of any such quantity must specify these two pieces of in-
formation. Thus when a weatherman reports the wind velocity on a
particular day, he specifies not only the speed of the wind (magni-
tude of the wind velocity) but also the direction in which the wind
is blowing. Such quantities characterized by having magnitude and
direction are called vector quadtities. )

Just as .we use real numbers or scalars to represent_and manip-
.ulate scalar quantities, so we use the mathematical entities called
vectors to represent and manipulate vector guantities. Thus, in a
sense, vectors can be thought of as generalized numbers. The study

of the representation of vectors, the algebra and calculus of



-Vector Algebra

vectors, and their various applications constitute the subject mat-
ter of vector analysis..

Scalars and vectors are hardly sufficient to treat the class
of quantities that are of interest in applied mathematics and phy-
sics. In fact, there are quantities of a more complicated struc-
ture whose description requires more than knowledge of a magnitude
and a direction. For example, tp describe a quantity such as strer,
we need to give a force and a surface on which the force acts. Such -
a quantity can be described and represented only by the mathematical
entity called tensor. As we see later, vectors and scalars are '

. actually special cases of tensors.

In this book, We study vectors and tensors in the familiar
three-dimensional Euclidean space. In many cases, the concepts and
results obtained for the three-dimensional space can be immediately
extended to hiéher dimensional spaces. Throughout the book we use
underscored letters--A,B,... or a,b,...--to denote vectors and’
lowercase letters a,b,... to denote real numbers or scalars. Tin-

sors are represented by their so-called components.

1.2 DEFINITION OF A VECTOR

A vector may be_defined in essentially three different ways: geo-
metrically, analytically, and axiomatically. The geometric defin-
ition makes use of the notion of a.directed line segment or an
arrow. A line segment determined by two-given points P and Q is
said to be directed if one of the points, say P, is designated as
the initial point and the other, Q, the terminal point. The direc-
ted line segment so obtained is then denoted by PQ, and it is shown
graphically by drawing an arrow from P to Q (Fig. 1.1). The length
of PQ is denoted by |PQ|. If PQ and RS are two directed line seg-
ments, then they are said to be equél (PQ = RS), if they have the
same length and the same direction. ‘Now, geomeétically, a vector
is defined as the collection of all directgd line segments or ar—
_rows having the same length and direction. ~ (Such a collection is

also called an equivalence class of directed line segments, and any
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.FIG. 1.1 Directed line segments.

two members of the class are said to be eguivalent.) The common
length of the arrows represents the magnitude of the vector, and
the arrowhead indicates the direction of the Qector.. Any one of
the arrows in the colléction can be identified as the vector. Thus,
for example, the collection of arrows as shown in Figure 1.1 defines
a vector A. In this definition, the algebraic operations on vectors
are introduced and studied geometrically. This approach has the ad-
vantage of being free of any frame of reference or coordinate sys-
tem, which is an important property. of vectors. However, it is
inefficient for computational purposes.

In the analytic approach, a vector is defined as an ordered

triple of real nufbers [al;a a3] relative to a given coordinate

.
system. The real number's'alfaz,a3 are called the components of the
vector. These components, of course, arise naturally from the geo-
metric description of a vector once a coordinate system is intro-
duced. Algebraic operations on vectors are then defined in terms
of the components, and the propertieé of these operations are read-

ily deduced from the corresponding properties of the real numbers.
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By far, this approach is the most convenient for theoretical and
practical considerations. However, it must be kept in mind that
the components are dependent on the coordinate system used, and}‘
therefore, a change of coordinate system results.in a change of the
components, although the vector .itself remains the same.

Lastly, the axiomatic point of view treats a vector simply as
an undefined entity of an abstract algebraic system called a linear
vector space. In such a system, the vectors are required to satis~
fy certain sets of axioms with respect to two algebraic operations
that are undefined concepts. As we see later, the sets of axioms
for a linear vector space'are precisely the properties. satisfied by
vectors with respect to the vector operations of addition and mul-
tiplication by scalars as developed by either the geometric or the
analytic approach.

In this chapter, we develop the algebra of vectors on th~ ba-
s;; of the analytic definition of a vector, and we use directed
line ‘segments or arrows to represent vectors .geometrically and to
give geometric interpretations of our results. Accordingly, we
assume a coordinate system in our space. As it is commonly used,
we assume a right-handed rectangular cartesian coordinate system
(x,y,2). The student may recall that such a coordinate system con-
sisﬁs of three lines that are perpendicular to each other at a com-
mon point O called the origin (Fig. 1.2). The lines are deﬁignated
as the x; y, and z coordinate axes, and a definite direction on each
axis is chosen as the positive direction. The coordinate system is
then said to be right-handed if when the index finger of the right
hand points along the positive x-axis and the éenter finger points
along the positive y-axis, the thumb points along the positive z-
axis. This rule is known as the right-hand'rule. A different ver-
sion of this rule states that if the fingers of the right hand point
in the direction in which the positive x-axis must be rotated
(through the smaller angle 6 = 90°) in order to'boincide with tbe
positive y-axis, the thumb points in the direction of the positive.
z-axis. With-respect to such ‘a rectangular cartesian coordinate

system, we now define a vector as follows:
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(a) Left-handed - (b) Right-handed

FIG. 1.2 Rectanqular cartesian cobtdinate systems.

DEFINITION 1. A vector A is an ordered triple of real numbers a.

2,33]; a, is called the first or x-com-

the second or y-component, and a

,a2, a3, written as 5 = [al,a
ponent, a2 the third or z¥compon-

ent of the vector.

3

A vector whose components are all zero is called the, zero vef™
tor, and it is denoted by 0; thus, 0 = {0,0,0]. The negative of a

vector A, denoted by =A, is defined as the vector

a_.l

-A = [-a),-a,,-a,

For example, if A = {2,-1,3), then -A = [-2,1,-3].

DEFINITION 2. The magnitude of a vector A = [al.a
|al, is the real number defined by

2,a3], denoted by

al = (al2 +a 24 a 2)1/2

2 3 o (1.1)

It is clear that [A| = 0 and that |A| = 0 if and only if A = Q.
A vector that has a magnitude equal to 1 is called a unit vector.
In the sequel, unless stated otherwise, every vector under

discussion is assumed to be nonzero.
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1.3 GEOMETRIC REPRESENTATION OF A VECTOR

A vector (nonzero) A = [al,az,aB] can be represeqted géomettically
by a directed line segment or an arrow drawn from the origin to the
point P:(al,az,a3) as shown in Figurellé3. I; fact? :izsee that
the length of the arrow is equal to (a1 ta, +a, ) , which is
the magnitude of the vector as defined in (1.1). The direction of
oP may.be described by the three numbers cos a, cos 8, éos Yy that
are called the direction cosines of OP. From Figure 1.3, we see
that .

1 ’

a a
cos a = T;T cos B = —

a
af’ Tal

3

cos y = |5

(1.2)
so that the direction cosines of OP are proportional to the compon-
ents of the Vector. Thus the directed line segment OP represents
the vector A in magnitude as well as in direction. We call OP a

geometric vector representing A.

‘F1G. 1.3 Geometric‘representation of a vector.
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Notice that by (l.vl) the direction cosines (1.2) satisfy the
important refation

cos a + g:osz B + <:<)s2 y=1 (1.3)

Thus the vector u = [a1/|§| . az/[gl, a3/ll_\i] is a unit vector hav-
ing the same direction as A. It follows that every nonzero vector
can be converted into a unit vector (normalized) by dividing its
oo;lponenta‘by its magnitude. This process of making an arbitrary
vector into a unit vector is sometimes called the normalization
process.

It should be pointed out that a vector can also be represented
by an arrow drawn from an arbitrary point in space. 1In fact, if P
.is 'a point with coordinates (xy:¥q+2,) and Q another point with the
coordinates (xo + a. ¥, +a,, z, + a3) , then the directed line seg-
ment PQ also represents the vector A geometrically (Fig. 1.4). This
cah be readily checked in 'ghe same manner discussed previously.

//r ":
]
'
- !
z '
: '51‘3'0052'20“’3)
'
| 1
i )
| |
1 1
' 1
VLT Mk vz //, :
1,7 ! v, |
lc..?.L-.l..-.\--.V 1
] ' ! 1
o] ! i ! ] y
T T T =T
] ) t '
T S
- v
| ’ 1 4
! ‘ 1 Pad
x Ve I

FIG. 1.4 Representation of a vector.
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In this case, we note that the components of A are given by the
differences between the corresponding coordinétes of the points P
and Q. Thus a ve;tor represented by a directed line segment with
initial poigt (xl,yl,zl) and terminal point (xz,yz,zz) has compon-
ents given by

a1 = x2 - xl, a2 = y2 - yl, a, =z_ -2z {1.4)

Therefore, in representing a vector by a directed line segment, the
choice of the initial point is immaterial; what matters is the
length and the direction. However, it is copvehient to choose the
initial point at the origin so that the components of the vector
coincide with ihe coordinates of the terminal point. In this way,
we tﬁeﬁ associate a vector with ‘every point in space in a one-to-
one fashion.

We obsé:ve that if PQ represents a vector A, then QP represents
the negative of the vector, that is, -A. Obviously, the zero vector
is represented simply by a point, the o}igin. The zero vector is
the only vector that does not have a direction.

" In two-dimensional space (a plane), a vector consists of only
two components. In othér words, a vector in a plane is an ordered
pair of real numbers, A = [al,azl, with respect to a rectangular
cartesian coordinate'system (x,y). Such a vector is represented
geometrically by an arrow drawn from the origin to the point (al,az)
The direction of the arrow is uniquely determined by the angle 8
= arctan(az/al); see Figure 1.5. The relationship between the com-
ponents of the vector and the length and direction of an arrow

representing the vector is given by

a1 = A cos O, a2‘= A sin 8 oo (1.5)

where A indicates the length of the arrow.

EXAMPLE 1. A vector A is represented by the directed line segment
PQ, where P:(2,-1,3) and Q:(-1,-2,4). Find the components and mag-

nitude of the vector.
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FIG. 1.5 Vector in the plane.

Solution: Let us denote the components of the vector by a . a,,
and a3. Then by (1.4), we have

a, =sl-2= -3, a,=-2- (-1} = -1, ‘a3-4-3-1

Hence, by (1.1), the magnitude of the vector is equal to’

fal N I vy

EXAMPLE 2. Find the direction cosines of a directed line segment

which represents the vector A = {2,-1,2].

Solution: The magnitude of the vector is equal to

Ial =V22 ¢ (1% 42223

Hence, according to (1.2), the direction cosines of a directed line

segment representing A are given by

2 2
cos a = 7, cos B = - %. -cos ¥ = 3
'EXAMPLE 3. 1If A = [-1{/31, what is the length and direction of an

arrow which represents the vector? E

Solution: The length of an arrow representing the vector is equil
to the magnitude of the vector, which is given by



