Principles of
- Computer Design

Leonard R. Marino

3
e R "

—
[

—

A

. iy
" i i e
r.s
s

Principles of { o
Computer Design

Leonard R. Marino
San Diego State University

COMPUTER SCIENCE PRESS

Copyright © 1986 Computer Science Press, Inc.
Printed in the United States of America.

All rights reserved. No part of this book may ‘be reproduced in any form,
including photostat, microfilm, and xerography, and not in information storage
and retrieval systems, without permission in writing from the publisher, except
by a reviewer who may quote brief passages in a review or as provided in the
Copyright Act of 1976.

Computer Science Press
1803 Research Blvd.
Rockville, Maryland 20850

123456 Printing Year 91 90 89 88 87 86

Library of Congress Cataloging in Publication Data °

Marino, Leonard R. -
Principles of computer design.

Bibliography: p. .

1. Electronic digital computers—Désign and
construction. 2. Computer architecture. 1. Title.
TK7888.3.M3524 1985 621.3819'582 84-23817
ISBN 0-88175-064-6

Preface Ix

Throughout the text, computers are discussed from the viewpoint of the
designer, even though the primary objective is to prov:de an understanding of
coimputer structure, and not necessarily to train designers. The design view-
point is adopted because it offers the truest insights into the current structure
of computers, and provides the best basis for undetfstanding future develop-

ments. Also, the inclusion of practical dengn techniques fdcilitates the con-

struction of meaningful exercises.

Microcircuit design (i.e., the design of : a circuit to be 1mplemented on the

surface of an IC chip) and macrocircuit design (i.e., th: design of systems
using ICs as components) are given equal emphasxs in the text. Microcircuit

design has become increasjngly important to computer system designers in'

recent years, as the size of the system that can be implemented on a single IC
chip has increased. At the same time, macrocireuit design has remained im-
portant, both because high-performance computers are constructed from
smaller-scale (and faster) chips, and becaunse no matter how large the system
on a single chip may be, there will always be the need for systems that areé
much larger. '

The emphasis throughout this text is on the principles of the design process
rather than on the details of currently available devices or current practice.
This does not imply, however, that the text is oriented toward theory rather
than practice. In fact, the reverse is true. Practical systematic design tech-
niques are presented, and difficult issues such as loading, transmission line
effects, and noise are considered. Specific devices are used for illustration,
but the emphasis is on design principles that are independent of device de-
tails. After finishing the text, the student should be equipped to undertake
design projects of considerable complexity, using any sort of digital compo-
nents.

Chapter Summaries -

Chapter 1 provides an overview of computer organization, design, and pro-
duction. In Section 1.1 a particular computer architecture is described which
is used in examples and exercises throughout the text. The 6800 microproces-
sor system architecture was selected for this purpose because it illustrates all
of the important aspects of traditional (von Neumann) computer architec-
ture, yet it is simple and uncluttered. It is also an architecture of continuing
commercial importarce, since all 68xx family processors are compatible with
the 6800. Assembler language | progtammmg is introduced in thls section, and
is used throughout the text.

In Section 1.2 an important principle of computer science is introduced,
that complexity in a digital computer arises not so much from the inherent
complexity of the primitive components from which the machine is con-
structed (e.g., transistors are used simply as switches), but rather from the

x ' Preface

overwhelming number of details that must be managed when interconnecting
many of these simple components. One of the most important skills that a
computer engineer must develop is the ability to manage this complexity of
many details. The ideas of using multilevel models and modular design tech-
niques to control complexity are introduced in this section, and’ applled
throughout the text.

In Section 1.3 the major packaging levels, macrocircuit and microcircuit,
are introduced, and the economics of computer production are discussed.

Chapter 2 provides a brief review of electric circuits, followed by an intro-
duction to the fundamentals of digital electronics. Simple switching models of
transistors are presented and used to analyze logic gate structures. The fun-
damental roles of capacitance and resistance in determining speed and power
dissipation in digital circuits are discussed. The elementary physics and me-
chanics of integrated circuit operation and fabrication are presented.

A compact presentation of combinational network design is provided in
Chapter 3. Several traditional topics are omitted, including formal Boolean
algebra and tabular minimization of switching functions. These topxcs Ate no
longer of fundamental importance in computer desngn. and are better left to
an advanced course in logic design.

Dlgltal arithmetic is presented in Chapter 4. Because of its fundamental
importance, and because it is frequently a source of confusion for students,

“this topic is treated with particular care. A clear distinction is maintained
" between binary words and the numbers that they represent, and speciaj atten- -

tion is given to dealing with overflow and representing numerical relations.

Chapter 5 begins with a discussion of digital signalling, that is, the use of
voltages to transmit information between components. The major classes of
register transfer level components are then discussed: combinational net-
works, pulse generators, memory, and sequential networks. Microcircuit and
macrocircuit implementations of each component are presented.

Chapter 6 describes systematic techniques for register transfer level design.
Several design examples are presented in detail, including input-output con-
trollers, a DMA controller, and the 6800 processor. Mlcropregrammmg is
discussed in the last section.

Chapter 7 is devoted to topics associated specifically with macrocxrcult de-
sign. Macrocircuit models for IC interconnections are described, and stan-
dard electrical and timing specifications are discussed. These models apply to.

all levels of macrocircuit design, including high-spéed MSI/LSI-based sys-

ftems, microprocessor-based systems, and high- performance systems eon-
structed from custom LSI and VLSI components. Transmission {ine effects,

‘which are crucial in high-speed systems, are considered in detail. Noise is also
‘considered, but because of the limited background assumed, the discussion is
, ‘necessarily qualitative. The objective is to provide an intuitive understanding

of the principles involved.

Preface xi

Note to Instructors

One of the difficult aspects of teaching computer design is determining the
proper amount of detail to include in lectures. A lecture with too ruch detail
will be boring, while one with too little detail may be dismissed as superﬁclal
The optimal amount and selection of detail deperds upon the backgrourid of
the students and the objectives of the course.

In order to allow sufficient latitude to accommodate different situations, a
considerable amount of detail has been included in this text. I is not in-
tended that all of this detail be laboriously presented in lectures, although at
one time or another almost all of it has been included in my own lectures. It is
intended, rather, that lectures focus on general principles, illus‘rated by se-
lected examples, with much of the detail left as assigned or elective reading.

This text is suitable for a first course in computer design for students of
computer science or computer engineering. The orily prerequisite is comple-
tion of the standard lower division university physics and calculus sequences.
With this minimal background, it should be possible to complete the text in
two semesters.

The text is also suitable for a course that is preceded by o..e or more courses
in electronics, logic design, or computer organization. Selected portions of
the text may then be omitted or covered lightly, making a ¢ n1e semester course
possible.

Acknowledgements

Many friends and colleagues have helped me in writing this book. I would
especially like to thank Bill Brown, Alex Iosupovici, Chuck Seitz, and Jeffrey
Ullman for reading parts of the manuscript and making many excellent sug-
gestions. I am grateful to my brothers Al and Tony for frequent helpful dis-
cussions and valued advice. I am indebted to Tom Windeknecht and Hank
D’Angelo, from whom I have learned a great deal, and who have significantly
influenced the paths that I have taken. Thanks also to the hundreds of stu-
dents who have sustained me with their interest and curiosity while reading
draft versions of this text in the EE373, EES73, and EES03 courses at San
Diego State University.

My wife suggested the following dedication for this book: ‘“To my beautlful
wife, Kay, and wonderful children, Jesse, Daniel, and Katie, in spite of whom
this manuscript was completed.” However, while it is conceivable that this
work might have been completed sooner without the distractions of my fam-
ily, it is far more likely that without them it would not have been completed at
all. It certainly would not have been completed without Kay's generous sup-
port and understanding.

xii Preface

Quotations

I always enjoy reading quotations that provide a sense of h;istory or capture
_ the essense of an important idea with a brief statement. Here are several that
are relevant to computer design.

Everything should be made as simple as possible, but not simpler.
“ Albert Einstein

Achilles: There must be some amazingly smart ants in that colony,
I'll say that. .
Anteater: I think you are still having some difficulty realizing the
difference-in levels here. Just as you would not confuse an individual
tree with a forest, so here you must not take an ant for the colony.
You see, all the ants in Aunt Hillary are as dumb as can be. They

cguldn't converse to save their little thoraxes.
Douglas Hofstadter

Iregard programs as specific instances of mechanisms, and I wanted
to express, at least once, my strong feeling that many of my consider-
ations concerning software are, mutatis mutandis, just as relevant
for hardware design.

The art of programming is the art of organizing complexity, of mas-
tering multitude and avoiding its bastard chaos as effectively as pos-
sible.

(We should) restrict ourselves to simple structures whenever possible
and avoid in all intellectual modesty ‘‘clever constructions'’ like the
plague. :

Program testing can be used to show the presence of bugs, but never

their absence. '
Edsger W. Dijkstra

As the result of the large capacity of computing instruments, we have
to deal with computing processes of such complexity that they can
hardly be constructed and understood in terms of basic general pur-
pose concepts. The limit is set by the nature of our own intellect:
precise thinking is possible only in terms of @ small number of ele-
ments at a time. The only efficient way to deal with complicated sys-

tems is in a hierarchical fashion.
0. J. Dahl and C. A. R. Hoare

Preface

Inasmuch as the completed device will be a general-purpose comput-
ing machine it should contain certain main organs relating to
arithmetic, memory-storage, control and connection with the human
operator.

The utility of an automatic computer lies in the possibility of using a
given sequence of instructions repeatedly.
A. W. Burks, H. H. Goldstine and J. von Neumann (1946)

The entire UNIVAC system is constructed of circuits which . . . have
been designed as building blocks, and the entire computer is con-

structed around these blocks.
J. P. Eckert, et al (1951)

“To be is to do’’ —Socrates
“To do is to be’’—Jean-Paul Sartre
“Do be do be do" —Frank Sinatra
Kurt Vonnegut

CONTENTS

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

.. vili
AN OVERVIEWoiiiiiiiiiininnnnnnn. 1
1.1 Computer Organization 1
1.2 ComputerDesign............................ 63
1.3 Computer Packaging and Production . .~......... 76
DIGITAL ELECTRONICSvo... .. 9%
2.1 Electric Circuit Review 90
2.2 Digital Circuits...................... e 104
2.3 Integrated Circuits........................... 133
LOGIC DESIGN: COMBINATIONAL

NETWORKScoiiiiiiiiiiiinenn, 145
3.1 Switching Functions 146
3.2 GateNetworks, 152
3.3 SwitchNetworks 176
3.4 Elementary Word Operations 188
DIGITAL ARITHMETICccovivnnennn. 197
4.1 IntegerCodesciiiiiuina... 198
42 Addition 204
4.3 Subtraqion 219
4.4 Multipfication 231
45 Divisiofi 239
4.6 Real Atithmetic 246
REGISTER TRANSFER LEVEL

COMPONENTSooiiitiiiiiiiiinnnnnnnnns 263
5.1 Digital Signals e 263
5.2 Combinational Networks 281
S.3 PulseGeneratorsc....... 312

vi

Contents

CHAPTER 6

CHAPTER 7

5.4 MemoryComponents 323
5.5 Sequential Networks 368
REGISTER TRANSFER DESIGN............... 392
6.1 Fundamentals 392
6.2 A Synchronous Onc-Shot 394
6.3 10 Controllers e 419
6.4 DMAControllers 451
6.5 Processorscvviiviniiniinn cvveinnnnn. 484
6.6 Control Unit Variations 512
MACROCIRCUIT DESIGNovvvvnen. 529
7.1 IC Interconnections.oo.... 529
7.2 TransmissionLines 540
73 Noisecccviivnnn. e, 558
... 565
... 568

.
.
v

Chapter 1

AN OVERVIEW

1.1 Cemputer Organization
1.2 Computer Design
1.3 Computer Packaging and Production

This chapter introduces the study of digital computers from three perspec-
tives. Section 1.1 describes the general organization and operation of stored
program computers. Section 1.2 discusses some of the issues involved in de-
signing complex systems and presents general systematic methods for dealing
with complexity. Computer design serves as a vehicle for the discussion, but
the principles apply to the design of any complex system. Section 1.3 dis-
cusses the technologies involved in implementing and packaging digital com-
puters. It is these fhatters more than any other that determine the cost of
digital computers, and hence their impact on society.

1.1 COMPUTER ORGANIZATIGN [1-8]

1.1.1 Fundamental Characteristics
1.1.2 Structure and Operation
1.1.3 Instruction Set

1.1.4 " Programming

1.1.5 Input-Output Operation
1.1.6 Exercises

In this section, the fundamentals of computer organization and program-
ming are ptesented, using the 6800 microprocessor as an example. This par-
ticular processor was chosen because it is simple and yet it has all the funda-
mental characteristics of a modern processor. In addition, the 6800

1

2 An Overview

architecture is likely to remain popular for many years, since it is used, with
various modifications, by all of the 6800 family microprocessors. This family
includes processors significantly more powerful than the 6800 (e.g., the
6809), as well as single-chip microcomputers (e.g., the 6805).

1.1.1 Fundamental Characteristics

In this section are described the most fundamental characteristics of com-
puters. These characteristics are shared by essentially all digital computers.

Digital Representation of Information

Computers are machines that store and process information. Within a com-
puter, information is represented by binary words. A binary word (ot simply a
word) is a sequence of bits. A bit is a “‘binary digit,” either 0 or 1. For exam-
ple, 01101011 is an 8-bit binary word.

Registers. Within a computer, words are stored in devices called registers.
There are many different ways to implement registers (see Section 5.4). Re-
gardless of the implementation, however, registers always serve the same pur-
pose: to store binary words.

Placing a word into a register for storage is referred to as loading the regis-
ter, or writing into the register. Examining a register to determine what word
is stored is referred to as reading the register. The word in a register is not
changed by reading. After loading a register, the word loaded remains in the
register until another word is loaded.

A memory is a set of registers that share the same hardware for reading and
writing. Memories are classified according to the type of read and write access
that they provide.

Mathematically, a register is represented by a binary word variable. The
value of the variable at any time is the word stored in the register at that time.
We will normally use capital letters or strings of capital letters to denote bi-
nary word variables.

Individual bits of a binary word variable are binary variables. These are
normally referred to by using the word variable name with a subscript to iden-
tify the specific bit, as illustrated in Figure 1.1..The subscript range associ-
ated with an n-bit word is usually (n — 1:0), as in the.figure for the 8-bit
register X.

In block diagrams, registers are represented by rectangular boxes. If it is
necessary to represent individual bits (or “‘cells’’) of the register, this is done
by subdividing the box, as in Figure 1.1. Each cell may contain either a 0 or
al.

Computer Organization 3

7 6 5§ 4 3 2 10

x<1:0> [

X3

Figure 1.1 An 8-bit register

An 8-bit word is commonly referred to as a byte. The byte has become the
standard unit for specifying storage capacities. For example, a computer may
‘have 32 kilobytes (32K) of random access memory (RAM); a disk memory
may have a capacity of 16 megabytes (16M). The prefixes*‘kilo” and “mega,”
when used to specify storage capacities, mean 2'° and 2% (rather than 10° and
10° as in usual scientific notation). Hence, 32K is actually 32,768 bytes and
16M is actually 16,777,216 bytes..

For compactness, binary words are frequently represented by using hex-
adecimal notation. The bits of a word are separated into 4-bit groups, and
each group is represented by one hexadecimal digit, as defined in Table 1.1.
Hence, for example, the word 01101110 is represented as 6E and
1001010111000111 as 95C7.

Codes. Inorder to use binary words to represent information, it is necessary

to define a code that specifies the particular information value that is repre-
sented by each word.

Table 1.1. Hexadecimal notation

4-bit word Hex digit

0000
0001
0010
0011
0100
0101
0t10
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMUATDP OO IO HEWLWN=D

4 An Overview

The three general types of information that are most commonly repre-
sented in computers are: text, numbers, and programs.

Text. The most widely used code for representing text is the American
Standard Code for Information Interchange (ASCII, pronounced ass-key),
defined in Table 1.2.

Notice that the ASCII character set includes a number of “‘nonprinting”
text and control characters. The SP (space) and CR (carriage return) charac-
ters, for example, are part of the text since they separate words and lines.
Others such as SYN and ACK are not actually part of the text, but are used to
control the transmission of text or the operation of input-output devices.

The ASCII code is a 7-bit code. The registers in most computers, however,
are 8 bits or some multiple of 8 bits. For this reason, characters are normally
stored as 8-bit words. The eighth bit is either ignored (e.g., made 0 always) or
used as a “‘parity bit” for error detection. The value of the parity bit for a
character is chosen so that the total number of 1’s among the 8 bits is odd.
Any single-bit error that occurs in the transmission of a character can then be
detected. No matter which bit changes, the parity of the resulting word is
even.

Numbers. The fundamental code for representing unsigned integers is the
base 2 code (abbreviated B2). If [X], denotes the integer represented by the
word X (n — 1:0) under the B2 code, then

Xh=Xp-2°+ X;-2'+ --- + X, -2} (1.1)
For example, [1101}, = 1-2°+ 0-2' +1-22+ 1-23 = 13,

The most common code for representing signed integers is two's comple-
ment code (2C code). The 2C code is a variation of the B2 code. Arithmetic
under the B2 and 2C codes is discussed in Chapter 4.

Real numbers are represented by fixed-point and floating-point codes.
These are also discussed in Chapter 4.

Programs. Programs are the third type of information commonly stored in
computers. Programs are represented by a special code called machine code.
Programs and machine code are discussed later in this section.

Register Transfer Operations

A computer processes information by doing operations on words. For exam-
ple, the symbol +, denotes the operation that takes two words of the same

Computer Organization

Table 1.2 ASCH code*

xa P 000. 001 010 | 011 | 100 | 101 | 110 1
0000 NUL DLE Sp 0 @ P i p
0001 SOH DCl1 ! 1 A Q 8 q
0010 . STX DC2 ” 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 b T d t
0101 ENQ NAK % S E U ¢ u
0110 ACK SYN. & 6 F'| V f v
J111 BEL ETB ’ 7 G w g w
1000 BS+ CAN (8 H X | h x
1001 SKIP HT EM Y 19 I 1Y i y
1010 . LF SUB * : J z j z
1011 VT® ESC + [K []| k {
1100 FF— FS , < L N\ i |
1101 CR GS - = M] m }
1110 SO RS . > N A n ~
1111 SI UsS / ? O —] DEL
*Control character abbreviations:

NUL null DC1 device control 1

SOH start of heading DC2 device control 2

STX start of text DC3 device control 3

ETX end of text DC4 device control 4

EOT end of transmission NAK negative acknowledge

ENQ enquiry SYN synchronous idle

ACK acknowledge ETB end of transmission block

BEL bell CAN cance!

BS backspace EM end of medium

HT horizontal tabulation SUB - substitute

LF linefeed ESC escape

VT vertical tabulation FS file separator

FF form feed GS group separator

CR carriage return RS record separator

SO shift out US unit separator,

SI shift in SP space '

DLE data link escape DEL delete

6 An Overview

length and produces a third word which represents their sum under the B2
code. The result word is one bit longer than the original words.

The word operation '+, is the same as +, except that the extra bit is
dropped, so that the result is the same length as the operands. This is called a
fixed-range operation. (“Overflow” is possible with. fixed-range operatlons,
but this peed not be diseussed here:) -

In similar fashion + ¢ denotes addition under the 2C code, — ¢ is subtrac-
tion under the 2C code, + g is addition under our floating-point code, and so
on. The definition and implementation of anthmetlc word operatlons are dis-
cussed in Chapter 4.

Logic operations on words are simpler (e.g., AND, OR, INVERT, SHIFT).
No overflow is possible. These are discussed in Chapter 3.

A register transfer (RT) operation is a word operation with the operand
words taken from specific reglsters and the result word loaded into a specific
register. For example, A +, B - C denotes the RT operation that takes the
words in A and B, performs the fixed-range B2 addition operation, and puts
the result into register C. A.and B are called the source registers for ‘the
operation; C is called the destination register.

Only the destination register is changed by an RT operation. Source regis-
ters are unaffected. A particular occurrence of the operation A +, B = Cis
illustrated in Figure 1.2, Notice that only register C is changed by the opera-
tion. There is no overflow in this example; the fixed-range operation is cor-
rect. The integers represented by the operand words are 5 and 7 and the inte-
ger represented by the result word is 12.

’ A - 8 (4
Before: I010 1] |01 1 1] |0010|

Operation: A Bs—wcC

A 8 [
Aar:

Figure 1.2 An RT operation

Prograrm Controlled Opération

Computers perform complex information processing tasks by doing long se-
quences of simple RT operations. The RT operations that a computer is capa-
ble of performing are determined by the computer’s instruction set. Each in-
struction specifies a particular operation, including the source and

Comiputer Organization 7

destination registers for the operation. Instructions are represented by binary
words, as defined by the machine code. The instruction set and machine code
for a particular processor are presented in Section 1.1.3.

A program is a sequence of instructions. The information processing task
that is performed by a computer is determined by a program that is stored in
the computer’s memory. The instructions that constitute the program are
“fetched”’ (i.e., read from memory) and “‘executed” (i.e., the specified RT
opetation is perfor\’ned) one at a time.

The processing task that a computer perférms can be changed simply by -
changing the program that is stored in the computer’s memory. This ability to
“program” a computer to do different jobs is the most important economic
characteristic of computers. The major benefits of this characteristic are two:

1. It allows a single expensive machine to be shared for many small tasks, '
none of which mdlvxdually could Justify the machine cost.

2. It allows the same machme to be used for many different apphcatlons, :
thus increasing the market size and allowmg the machine to be mass-pro-
duced. This greatly reduces the cost per machine.

1.1.2 Strticture and Operation

The structure of a typical small compiiter is shown in Figure 1.3. The P; M,
10C, and DMAC blocks communicate with each other via a single communi-
cation channel called the system bus. More complex communication struc-
tures are possible, involving multiple communication paths and switches (see
Section 1.2.3). However, the same major components (P, M, 10C, 10D, and
DMAC) are used in these more complex structures and the role played by
each of these components in the operation of a computer remains essentially
the same, regardless of the complexity of the communication structure.
¢
|

(] [ee] e
[1e0]

Figure 1.3 Single-bus architecture

