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PREFACE

The broadest understanding of information theory includes all problems where it is
sensible to use the word “information” in its usual sense. In a narrower sense,
information theory includes the theoretical problems connected with the transmission
of information over communication chananels. From the viewpoint of mathematics,
alarge fraction of these problems are applications of [ probability theory, mathematical
statistics and modern algebra.

It is difficult to overestimate the influence of the work of Claude E. Shannon
(1948) on modern information theory, since so many of the fundamental results arose
{from his work. Today, information theory takes an important place in the theory of
knowledge.

The aim of the author is to give in the same book both the theoretical back-
ground of information theory and some applications in coding theory, statistical
inference, statistical mechanics, classification theory, pattern-recognition theory, and
prediction theory. Having such an ambitious aim, the book suffers, without any
doubt, from omission of many well-established relevant facts and I must apologize
in advance for my inability to put together an exhaustive sequence of theorems and
an impartial bibliography.

The book is divided into five parts, with comments and exercises at the end of each
part. The bibliography is given at the end of the book, with those works mentioned

5505376



xii PREFACE

in'tha text indicated by an asterisk. The connection between the chapters of the book
is shown in the figure below.

With respect to the mathematics involved, the first two parts require a general
knowledge of measure theory, the third part uses the theory of finite fields (Galois’
theory), and the fourth part assumes a working knowledge of differential equations
and estimation theory. In any case, a postgraduate student in mathematics, physics,
or engineering science will find no difficulty at all'in the reading of the book.

It is clear that there is a very wide spectrum of books which could be written on
information theory. On the one hand, there are books of high theoretical content for
mathematicians and information theorists and, on the other hand, there are books
written especially for engineers and scientists where the mathematical treatment is
lessrigorous, simply presented, and where the emphasis is on application. An attempt
to bridge these two extremes has been made here. The chapters of the book contain
only those relevant results, concepts, and applications of information theory which
arefamiliar to theauthor and which can be rigorously presented from the mathematical
point of view. The comments and the exercises at the end of each part bring the
reader up to date on the more special developments and considerations of the con-
cepts. Of course, there is no pretention at all that the book contams all relevant
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results and applications of information theory. However, the author hopes that the’
book will be of worth not only for information theorists and mathematicians but also
for other’scientists working on computer science, engineering, system theory, and
even social sciences. If the reader is interested only in some particular field, he can
ignore some mathematical details of the proofs and, using the diagram contained in
Fig. P.1, can progress more rapidly to the problems of interest for him,

I want to express my deepest gratitude to the Leverhulme Trust, London, and
especially to Lord Holford, director of the Leverhulme Trust Fund. This book was
written during the academic year 1973/1974 when I was a Leverhulme Visiting
Research Fellow at the University of Manchester, Department of Mathematics. I
found in the Statistical Laboratory of that University an excellent scientific atmos-
phere and very good working conditions. I am especially indebted to Professor
Violet R. Cane, Dr. R. A, Doney, Dr. E. K. Kyprianou, Senior Lecturer Richard
Morton, Professor F. Papangelou, and Dr. Paul Stewart from the University of
Manchester, constituting a genuine and kind scientific family.

I'am grateful also to the British Council and especially to Miss W. M. Feehan
and Miss B. Whittle for continuous assistance. Many thanks are due to the East
Europe Centre of Great Britain and especially to Sir William Harpham, director of
the Centre, and to Mr. Doreen Berry, deputy director, for their interest in my visit to
England.

I should like to thank my teacher, Professor Octav Onicescu, from the University
of Bucharest, for our permanent scientific dialogue, and Professor Mircea Malita
for his continuous help and interest in my work. Many thanks are due to Proefessor
Nicolae Teodorescu who created for me the possibility to give lectures on informa-
tion theory and on coding theory at the University of Bucharest, Faculty of
Mathematics and Mechanics.

Dr. Paul Stewart kindly assumed the difficult task of carefully editing a big
manuscript full of mistakes and omissions. I should like to thank him for his
laborious work without which the book could not appear.

I am very happy to have my book published by McGraw-Hill International
Book Company, a famous Publishing House, well known throughout the world.
The constructive criticism of its reviewers essentially contributed to the improvement
of the manuscript. I should like to thank McGraw-Hill Production Department
in Maidenhead, England, for the high quality of the printing. Many thanks are due
to Mrs. Elizabeth Woods, Production Controller, for her great contributions to the
correct printing of the book.

My final thought of gratitude is for Mr. Albrecht von Hagen, from the Centre for
Advanced Publishing of the McGraw-Hill International Book Company in
Diusseldorf, Germany. His promptitude, detailed comments, suggestions, thoughtful
advice and direct discussions made this publication possible. I realize only now how
difficult, valuable'and important can be the work done by a genuine publisher.

Finally, I am indebted to all authors cited in the book.

SILVIU GUIAS§U
Manchester, 1 July 1974
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1

DISCRETE ENTROPY

1.1 DEFINITION AND PROPERTIES OF DISCRETE ENTROPY

Information theory is a branch of probabilizy theory originating from two papers
by Claude E. Shannon (1948) in which a new mathematical model of communication
systems was proposed and investigated. One of the most important innovations of
this model was in regarding the components of a communication system (i.e., the
source of messages, the communication channel) as probabilistic entities. In his
papers, Shannon proposed a quantitative measure of the amount of information
supplied by a probabilistic experiment, based on the classical Boltzmann’s (1896)
entropy from statistical physics. In this conception the amount of information is
strongly connected to the amount of uncertainty. In fact, the information is equal to
the removed uncertainty. In 1948, C. E. Shannon made the first consistent attempt
towards the measurement of such difficult and abstract notions as information and
_ uncertainty.

Let us consider a probabilistic experiment having n possible results (or outcomes,
or elementary events) ay, ..., a, with the respective probabilities p;, ..., P, satisfying
the conditions



2 INFORMATION THEORY WITH APPLICATIONS

We shall denote also the probability of the outcome g; of the probabilistic experiment
A (or of the finite probability space A having a,....,a, as the elementary events) by
p(a). We may represent such a probabilistic experiment, or such a finite probability
space, by the following scheme

a;...a a;...4
A =( 1 n> — ( 1 n > (11)
P1.--Dn p(al)--~p(an)
Of course, such a scheme contains an amount of uncertainty about the particular
outcome which will occur if we perform the experiment. We can see that this amount
of uncertainty contained a priori by the probabilistic experiment essentially depends

on the probabilities of the possible outcomes of the experiment. For instance, if we
consider two simple schemes

ay az nd a az
a
05 05 096 004
it is obvious that the first scheme contains more uncertainty than the second one.
In the second case, the result of the corresponding experiment is “almost surely” a;,

while in the first case we cannot make any prediction on the particular outcome
which will occur.

DEFINITION 1.1 Let us consider a finite probability distribution

p=0 (i=1..n  Yp=1
i=1

The corresponding entropy (Shannon's entropy) is the quantity

H,= Hn(pl’--'rpn) = - kz Dk log Px (12)
=1

The logarithms can be taken with respect to an arbitrary base greater than
unity. The justification of this arbitrariness will be given in the next paragraph. If
we take the base as 2 we shall write log,. Then the uncertainty in the scheme con-
sisting of two events with equal probabilities is considered as unity and its name
will be “bit”. If we take the base as e, we shall write log..

We define p, log p = 0if p, = 0, extending — x log x to the origin by continuity.

We shall see presently that this function can serve as a very suitable measure of
the uncertainty of the scheme (1.1) (or of the corresponding probabilistic experiment,
or of the corresponding finite probability space). As a matter of fact, this function has
a number of properties which we might expect of a reasonable measure of uncertainty
in a probabilistic experiment. The quantity H,(py,...,pa) is interpreted either as a
measure of uncertainty or as a measure of information. Both interpretations are
justified. In fact, the difference between these two interpretations is whether we
imagine ourselves in a moment before carrying out an experiment whose n possible
results have the probabilities py,...,p, in which case the entropy H.(py..... Pn)
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measures our uncertainty concerning the result of the experiment, or we imagine
ourselves in a moment gfter the experiment has been carried out, in which case the
entropy H,(p:,...,p,) measures the amount of information we got from the
experiment,

PROPOSITION 1.1  We have
H.py,....pn0 =0

PROPOSITION 12 If
pi,=1 and p;=0 (I<i<n;isiy)
then
Hy(py,---,p) =0

Both propositionsare obvious. According to the second proposition, the entropy
is equal to zero if one of the numbers py, ps, ..., p, is unity and all the others are
zero. But this is just the case where the result of the experiment can be predicted
beforehand with complete certainty, so that there is no uncertainty on the outcome.

Another obvious property is the following one.

PROPOSITION 1.3 We have
Hn+1(p1v"'1pm0) = Hn(plv"'rpn)

Furthermore, for fixed n, it is obvious that the probabilistic experiment with the
greatest uncertainty is the one with equally likely outcomes. The next proposition
shows us that Shannon’s entropy assumes its largest value for just the uniform
probability distribution.

PROPOSITION 1.4 For any probability distribution

pi>20 (i=1...,n), Zp.-=1

we have

1 1

H,(p,....pn) < H,{—....,—
(p1 Pn) (n n)
Proof Weshall use the well-known Jensen inequality for real-valued continuous
concave functions. Let f(x) be a real-valued continuous concave function defined on
the interval [a, b]. Then, for any x,..., x,€[a,b] and any set of non-negative real

numbers /..., 4, such that } 1, =1, we have
k=1

1=

S hef (%) sf< akxk) (3)
k=1 k=1
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For convex functions the converse inequality is true. Setting

1
a=0, b=1 x,=ps lk=;, fix)= —xlog x

we obtain
BN | L /&1
=Y “pelogpe< —( ¥ ~pe)log| Y =p
k=1h k=1n k=1n
whence

1 1
H.(pi,....p,) <1 =H, —,...,—)
(ps p») < logn (n " QED.

Let us consider two probabitistic experiments A and B whose possible outcomes
are dag,..., a, and by,...,b,, respectively. Further, let us introduce a compound
probabilistic experiment denoted by 4 ® B, which consists in the reaiization of both
of the experiments A and B. The compound experiment A ® B will be called the
product probabilistic experiment. A possible outcome of the product probabilistic
experiment A @ B will be a pair of possible outcomes (g, b;). Let us denote by 7y
{or equivalently by p(a, b)) the probability of the outcome (ay, b)) of the product
probabilistic experiment A ® B. The corresponding entropy will be

M:
s

Hum(A® B) = —
K

Ty log my

11
n
--3
k=11

We can introduce the following probabilities:

1
e

p(ay, by) log p(ay, by) (14)

s

1

(a) The probability of the outcome a; in the first experiment regardless of the
second experiment:

Pr = Z T (1.5a)
=1
or, equivalently,
play = Y plawb) (1.5b)
1=1

(b) The probability of the outcome b, in the second experiment regardless of the
first experiment :

q = Z Tkt (1.6a)
k=1

or, equivalently,

plb) = 3. pla b) (L6b)
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(¢) The probability that the event g, of the experiment 4 occurs, given that the
event b; of the experiment B occurred:

4
=== (q>0) (1.7a)
qi
or, equivalently,
plax, by )
ayib) = ——— b)>0 1.7b
plax| b)) () (p(b)) > 0) (1.7b)

(d) The probability that the event b; of the experiment B occurs, given that the
event a, of the experiment A occurred:

n
Q= — (x> 0) (1.8a)
Pk
or, equivalently,
plax. by)
bla) =—— >0 1.8b
p(b | ay) (@) (p(ay) > 0) (1.8b)

Taking into account all these quantities, we shall give some definitions.
DEFINITION 1.2 The conditional entropy of the experiment B calculated on the

assumption that the event a, of the experiment A occurred (or the entropy of the
experiment B conditioned by the outcome a) is

Hu(Bla) = — Y qulog qu (1.9a)
I=1

or, equivalently,
H.(B|a) = — 12:1 p(bi | ax) log p(by | ay) ' (1.9b)

DEFINITION 1.3 The entropy of the experiment B conditioned by the experiment
Ais

HoB|4)= 3. pHu(B|a)
k=
Y ¥ Paulog gu (1.102)

1I=1

k

or, equivalently,
ﬁ "

Hu(B|A) = Zl playHu(B|ay)
k=

S planp(®1] ax) log piby | ay (1.10b)

1i=1

k
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Similarly, we have

H,(A lb,) = - Z pu log pu
k=1

o (1.11a)
H,(4 | B)= — Z Z d:Puc log pu
k=11=1
or, equivalently,
A1) = = 5 plaa b log plas| )
o (1.11b)
H,(A|B) = - k; lzl pb)plax| by log plax| b)) [

PROPOSITION 1.5 The entropy of the product probabilistic experiment is equal to
Ho(4® B) = H,(A) + Hu(B| A) = Hu(B) + H,(4|B) (1.12)

i’re i From the probabilities (1.5) to (1.8), taking into account the definitions
aivens ahove, we obtain
" m

[1,‘,,(.4®B‘)= - }: z it log 4%}
k=1 1=1

"

= L ] Pkt 108 (Piqir)

k=1 171

Co \L Pk( z flu) log pi — Z Z PxQia 108 qu
i =1 k=1 1I=1

[

N ;

s A1) + HoB|A)

Simiularly for the second equality. E.D.
Y i Y

Let us notice here that the conditional entropy Ham(B|aj) is obviously a random
variable in the finite probability space A. Its value is completely determined by
the knowledge of which event «, of the finite probability space 4 actually occurred.
‘Therefore, the conditional entropy H,.(B| A) is the mathematical expectation of this

random variable.
From proposition 1.5 we obtain immediately the following equality.

PROPOSITION 1.6 For any rwo probabiiistic experiments (or finite probabiliry
spaces), we have

H,(4) — H,(A|B) = Hu(B) — Hu(B| A) (L13)

The equality (1.13) is the single “conservation law™ which has been found for the

amount ¢f information, or for the amount of uncertainty. It is known as the
“information balance.”

-ty
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Let us consider two independent (from probabilistic point of view) probabilistic
experiments A and B. Then we have
Tt = Pk+q1, G =41, P = Dk (1.14a)
or, equivalently,

plax. by) = play).p(b), p(b | ak)’ = p(b),  plax | b)) = p(ax) | (1.14b)
Obviously, in this case, we obtain
H,(B | A)=H,(B), H,A l By = H,(A) (1.15)

and proposition 1.5 gives the following.

PROPOSITION 1.7 Theentropy of the product probabilistic experiment correspond-
ing to two independent probabilistic experiments A and B is equal to

H,.(A® B) = H,(4) + H.(B) - (116)

Therefore, if the two experiments A and B are independent from a probabilistic
point of view, it is natural to require the information (or the uncertainty) given by
the product experiment A ® B to be the sum of the two amounts of mformatlon
(uncertainty) given by the experiments A and B.

PROPOSITION 1.8 For any two probabilistic experiments (or finite probability
spaces) A and B, we have

H.(B|A) < Ha(B) (1.17)
Proof Let us introduce the values
a=0, b=1 f(x)=-xlogx, A=px Xkx=4qu
in the inequality (1.3). We obtain

- kzl pqu log qu < — kz,l Dxqu log (k; qukl) =—qlogq

for every | (1 < I < m). Therefore,

- Y Y pqulogqu< — ,-Zl q log g,

k=11=1

ie., the inequality (1.17). QED.

It is reasonable to interpret the inequality (1.17) as saying that, on the average,
the knowledge of the outcome of the experiment A can only reduce the uncertainty
of the experiment B, or, equivalently, the amount of information given by the
realization of the experiment B can only decrease if another experiment A is realized
beforehand. ‘

If the experiments A and B are independent from probabilistic point of view,
then in (1.17), we have the equality sign. But let us consider the other extreme



