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Preface

The degradation of metallic materials under the effect of corrosion is a costly
problem which nearly every industry is confronted with.

We believe that solving existing corrosion problems and preventing future
problems requires a detailed understanding of the mechanisms of corrosion. The
aim of this book is to review recent advances in the understanding of corrosion
and protection mechanisms. Dealing with fundamental and practical aspects, we
hope to provide the readers with a detailed view of the surface reactions that
govern corrosion and of the link between microscopic forces and macroscopic
behavior.

The book is organized into 16 chapters. Chapters 1 to 10 cover the basic
phenomena in corrosion: adsorption, anodic dissolution, passivation, passivity
breakdown. and localized corrosion as well as stress corrosion cracking. Chap-
ters 11 to 16 provide the connection between the theoretical aspects of corrosion
mechanisms and practical applications in industry: corrosion inhibition, atmos-
pheric corrosion, microbially induced corrosion, corrosion in nuclear systems,
corrosion of microelectronic and magnetic-storage devices, and the technologi-
cally important area of corrosion protection by surface coatings.

This book is based on the results of intensive worldwide research efforts
in materials science, surface science. and corrosion science over the past few
years. The contributors, from leading academic and industrial research institutes,
are highly recognized scientists in these disciplines.

P. Marcus
J. Oudar
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1

Introduction to Surface Reactions:
Electrochemical Basis of Corrosion

DIETER LANDOLT
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

INTRODUCTION

Most corrosion phenomena are of electrochemical nature. They imply two or
more electrode reactions: the oxidation of a metal (anodic partial reaction) and
the reduction of an oxidizing agent (cathodic partial reaction). To understand
corrosion reactions one needs to study electrochemical thermodynamics and
electrochemical kinetics of the partial reactions. For example, the corrosion of
zinc in an acid environment proceeds according to the overall reaction:

Zn + 2 H* > Zn>* + H, (1)

This reaction includes the anodic partial reaction (2) and the cathodic partial
reaction (3):

Zn > Zn*" + 2e (2)
2H*+ 2e - H, (3)

The corrosion rate depends on the electrode kinetics of both partial reactions.
1



2 Landoit

In principle, it can be predicted if all electrochemical parameters of the anodic
and cathodic partial reactions are known. According to Faraday’s law, there is
a linear relationship between the metal dissolution rate at any potential, v,,, and
the partial anodic current density for metal dissolution i,

lam
M nF
In this equation » is the charge number (dimensionless), which indicates the
number of electrons exchanged in the dissolution reaction, and F is the Faraday
constant, F* = 96,485 C/mol. In the absence of an external polarization a metal
in contact with an oxidizing electrolytic environment acquires spontaneously a
certain potential, called the corrosion potential, E,,. The partial anodic current
density at the corrosion potential is equal to the corrosion current density i,,,.
Equation (4) thus becomes:
iCOf
YMmiE=Eonr = Veor = ;l; (5)
The corrosion potential lies always between the equilibrium potentials of the
respective anodic and cathodic partial reactions. Its exact value is determined
by the kinetics of the partial reactions.

ELECTROCHEMICAL THERMODYNAMICS

Electrochemical thermodynamics predicts the equilibrium potential of the partial
reactions. The overall stoichiometry of any chemical reaction can be expressed
by eq. (6).

0=2Xv B, (6)

Here the symbol B, designates the reactants and products. The stoichiometric
coefficients v, of the products are positive and of the reactants negative. The
free enthalpy of reaction AG is:

AG = Z v, , (7

Here 11, is the chemical potential of the participating species. If reaction (6) is
carried out in an electrochemical cell, the corresponding equilibrium potential
E,. is given by

AG = —nFE_, 8)
By analogy, under standard conditions (all activities equal to one) one gets

AG® = —nFE° 9)
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where AG" represents the standard free enthalpy and £° represents the standard

potential of the reaction.
It is common to write electrode reactions in the general form

+ ne=2vy,B (10)

red i+ red.d

v, B

o ox.

Here v, represents the stoichiometric coefficient of the “‘oxidized’” species,
B,.. appearing on the left side of the equality sign together with the free elec-
trons, and v, indicates the stoichiometric coefficients of the reduced species,
B,...» appearing on the right side of the equality sign, opposite to the electrons.
Equation (10) corresponds to a partial reduction reaction and the stoichiometric
coefficients v, and v, are both positive.

By setting the standard chemical potential of the solvated proton and of
molecular hydrogen equal to zero, ug,, =0, ug, =0, one can define the standard
potential of the partial reduction reaction (10) with respect to the standard hy-
drogen electrode. The standard potential of an electrode reaction thus corre-
sponds to the overall reaction:

n
B + = HZ[PH;— Tbar) = 2 vrch Brcdj + n H+(uu‘:|. (ll)

L vou B
T2

ox.i

Table 1 indicates the standard potential of selected clectrode reactions. Extensive
compilations of data can be found in Refs. | and 2.

TasLE 1 Standard Potentials of
Electrode Reactions at 25°C

Electrode EN
Li* + e = Li ~3.045
Mg? + 2e = Mg -2.34
AP + 3e = Al ~-1.67
Ti** + 2e = Ti ~1.63
Cr + 2e = Cr ~0.90
Zn? + 2e = Zn ~0.76
Fe2* + 2e = Fe ~0.44
Ni2+ + 2e = Ni ~0.257
2H" + 2e = H, 0
Cu? + 2e = Cu 0.340
Ag' + e = Ag 0.799
0, + 4H" + 4e = 2H,0 1.229

Au®* + 3e = Au 1.52
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The chemical potential of a species B is defined by (12), where a; rep-
resents its activity.

Mg = Mg + RT In ay (12)

Introducing (12) into (7) applied to reaction (11), one obtains for the free en-
thalpy of reaction

an+n a’reds
AG = AG® + RT In ———= 13
"y (4
With (8) and using a,,, = 1, P,,, = 1 bar for the standard hydrogen electrode,

one obtains the Nernst equation (14) of an electrode reaction. It expresses the

variation of the equilibrium potential £, with respect to the standard hydrogen

electrode as a function of the activities of the participating species B, , and B, .
RT —Tlayy

E. =F + —In—> 14
nF Il ayy ()

.t
i

In Eq. (14) the activity of pure substances is equal to one. The activity of
dissolved ions cannot be determined unless nonthermodynamic assumptions are
made. In corrosion one usually replaces the ionic activities by the respective
concentrations. Thus for the electrode reaction (2) one obtains

RT
Erm = E‘Z‘.nﬁ' 7n + .27— In Canz+ (15)

Using the data of Table | and replacing the natural logarithm by the logarithm
base 10, this yields for 25°C

.059
E,. = -076 + log ¢,,+ (16)
In a similar way. for the reaction
Zn(OH), + 2H* + 2e = Zn + 2H,0 (17
the Nernst equation reads
RT
Ee = ESonezn T F In a;- (18)
At 25°C this becomes
E. = —0.439 — 0.059 pH (19)
In this Equation EY onyze = —0.439 is the standard potential for the formation

of a hydrated zinc oxide [2].
Pourbaix Diagrams:
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The graphical representation of the reversible potential as a function of
pH is called potential-pH diagram or Pourbaix diagram. In order to trace such
diagrams one must fix the concentration of the dissolved species. Figure 1 shows
a simplified Pourbaix diagram for zinc [2]. The numbers indicate different con-
centrations of dissolved species, for example. 10 2, 10~* mol/l. The diagram
shown takes into account the formation of zinc hydroxide, of Zn?* and of the
zincate ions HZnO; and ZnO3 . At high potentials ZnO, may possibly be
formed, but because the corresponding thermodynamic data are uncertain they
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FiGure 1 Potential-pH diagram of zinc. (From Ref. 2)



6 Landolt

are not presented in the diagram. The broken lines indicate the domain of ther-
modynamic stability of water. Pourbaix diagrams are widely used in corrosion
because they easily permit one to identify the predominant species at equilibrium
for a given potential and pH. On the other hand, being based on thermodynamic
data, they give no information on the rate of possible corrosion reactions.

KINETICS OF CHARGE TRANSFER REACTIONS

At the electrode-electrolyte interface a charge separation between the metal sur-
face and the electrolyte occurs. The spatial region corresponding to the charge
separation is called the electrical double layer. It is usually separated into two
parts, the Helmholtz layer or compact double layer and the Gouy-Chapman layer
or diffuse double layer. The relative importance of the diffuse double layer
increases with decreasing concentration. In very dilute solutions it may extend
over a distance of several nanometers, whereas the compact layer never exceeds
two to three tenths of a nanometer. The charges at the interface establish an
electric field. Within the compact double layer the electric field reaches values of
the order of 10* to 10° V/m. Charge transfer reactions occur across the compact
double layer and the influence of the diffuse double layer is usually neglected.
Let us consider the transfer of n electrons between two species, B and

o0x

Brcd‘
vV,
Brcd ‘—‘ﬁBm + ne (20)

v

According to Faraday’s law, the current density across the interface correspond-

ing to this reaction is equal to the difference of the anodic rate v, and the
cathodic rate v, multiplied by nF.

i = nF (vu - vc) = kz‘l(E) crcd.x - kl'tk) Cux.s (21)

Here k',,, and k', are potential-dependent rate constants and Cras and ¢
represent the surface concentrations of B,, and B,,, respectively. The rate con-
stants k', and k', obey the Arrhenius equation.

AG?

K, = Ko exp(- RT) (22)
AG*

k:‘lE) = kliu exp(_ RT) (23)

Here AG] and AG! represent the activation energies for the anodic and cathodic
partial reactions, respectively, and k', and k'_, are preexponential factors. The
presence of an electric field at the electrode-electrolyte interface modifies the
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activation energy of the partial oxidation and reduction reactions as shown sche-
matically in Figure 2. The electric field in this case diminishes the activation
energy of the anodic partial reaction and increases that of the cathodic partial
reaction.

AGH, = AGH,,, — o F AD (24)

a.ch
AGH, = AGH,,, + (1 — o) FAD (25)

Here AGH#, ., and AG#,,, represent the potential independent parts of the acti-
vation energies and A® represents the potential difference across the interface.
The proporticonality factor « is called the charge transfer coefficient. Its value is
usually close to 0.5 [3]. The absolute value of A® is not measurable. It differs
from the electrode potential £ measured with respect to the standard hydrogen
reference electrode by a constant.

E = A® + constant (26)

Combining all potential independent terms in the rate constants , and £, one
gets

Ficure 2 Free enthalpy as a function of the reaction coordinate showing the
influence of the electric potential on the activation energy of a charge transfer
process.
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, anF

ka(E) = ka exp( RT E) (27)
, (I — ayF

ke, = k. eXP(— TRT E)

With Eqgs. (21) and (27) one obtains Eq. (28).

F 1 — nF
i = nFk,c.y, exp(% E) — nFkc,. exp(— (——7(;)—— E) (28)
The current density i corresponds to the sum of the partial anodic and cathodic
current densities:

Pi=0 o+ (29)

c

The anodic and cathodic partial current densities, 7, and i, respectively, are given
by

= nFkc.,. e ("—"F E) (30)
Iu h (lCerA‘ Xp R T
. (1 — a) nF

- b e - L0 .
I nkkc,,, exp RT (31)

At the reversible potential, £ = E,_, the current density i is zero and the surface
concentration of the reacting species is equal to the bulk concentration: c,,,, =
Creab. Coxs = Coxp- This allows one to define the exchange current density of a
reaction by the relation:

i = T lgper, = (32)

atE = Ereny
With (32) and (28) one gets

F 1 — F
i, = nFk,c,q, exp(% E. ) = nFke,, exp(~ (—R(TXi

s E.) ©3)
This expression shows that the value of the exchange current density depends
on the concentration of the participating species. Defining the overvoltage M=
E — E,... Egs. (33) and (28) yield (34).

i i Crcd.s ex ((XHF . Cox.s e ( (1 - (X)nF ) (34)
=hooexploo ) —d o expl
‘ Crcd.h p R T T] Cnx.b p R T 1

If the rate of an electrode reaction is entirely controlled by charge transfer the
concentrations of reactants and products at the electrode surface are equal to the
bulk concentrations. Equation (34) then reads
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i=i, exp(%]{i n) - i, exp(— Q:R(Tlll: 1\) 35

This is the usual form of the Butler-Volmer equation which describes the rela-
tionship between current density and potential for a simple electrode reaction
controlled by charge transfer.

Normally, multielectron transfer reactions proceed in subsequent one-elec-
tron transfer reaction steps. For n>1, Eq. (35), therefore, does not describe the
physical mechanism. Indeed, depending on which reaction step is rate limiting,
the value of the exponential terms may change. For example, the cathodic re-
duction of protons corresponding to the overall reaction

2H* + 2e — H, (36)

proceeds in two steps. The Volmer-Heyrovsky mechanism applies to most metal
substrates:

H+ te— Hadx’ (37)
H* + Hads’ +e—o H2 (38)

On certain noble metals of the platinum group, however, the so-called Volmer-
Tafel mechanism applies:

H +e—H, |2X (39)
H,, + H, — H, (40)
2H* + 2e — H, (41)

In this case the second step is a chemical recombination reaction of adsorbed
hydrogen atoms produced in the first step, which according to the reaction stoi-
chiometry must proceed twice. The two mechanisms presented here and the rate-
determining steps can be distinguished by measuring Tafel slopes. For a more
detailed discussion of this point the reader may refer to the literature [3-6].

In corroding systems the detailed mechanisms of the partial electrode re-
actions are frequently not known. Therefore, it has been found useful to intro-
duce the empirical Tafel coefficients B, and B, defined by

dE

B.= dln i, (42)
dE

B. = din |1, (43)

Comparing these definitions with Egs. (30) and (31), one finds B, = RTlanF
and B. = RT/(1~a)nF. Equation (35) thus becomes:



