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Preface

This book is meant as a reference source for spectroscopic research in
experimental plasma physics and the physics of stellar atmospheres. It
may also serve as a text for a special graduate course in physics or astron-
omy, as it contains an introduction to the general theory of quantitative
spectroscopy, numerical results of this theory and their derivation, and
a description of experimental techniques and results. Applications of the-
oretical and experimental methods to the determination of plasma con-
ditions or atomic parameters are equally stressed. The extensive tabula-
tions of oscillator strengths, continuum emission coefficients, and line
broadening parameters should aid in laboratory experiments or quanti-
tative analyses of stellar spectra. For ease of reference, the tables are
grouped together after the text. The problems attached to the fifteen
chapters are designed as guides to a quantitative understanding of meth-
ods and applications; the solutions appear at the end of the book.

Quantitative spectroscopic techniques can be applied to many prob-
lems in laboratory plasma physics, astronomy, and related fields. Most of
the methods require a knowledge of atomic spectroscopy, which has been
treated in a number of books (see the bibliography below). Accordingly,
the reader of this book is assumed to have sufficient familiarity with the
theory of atomic spectra. Furthermore, the reader should have been ex-
posed to quantum-mechanical perturbation theory and to certain aspects
of statistical mechanics.
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vi Preface

Although the original literature on plasma spectroscopy has developed
to an impressive size, no comprehensive and critical review has been
attempted heretofore. For this reason, there will without doubt be omis-
sions and errors in this book, especially in the tabulated material. (The
author would be grateful if such defects were pointed out to him.) The
reader will also notice that in some areas much remains to be done. Here
the hope is that careful measurements and theoretical investigations can
be stimulated to remedy this situation in the future.

The author was introduced to this challenging subject by his teachers,
W. Lochte-Holtgreven and A. Unsdld, at Kiel University. The present
book has grown out of work done by the plasma physics groups at the
University of Maryland and the U.S. Naval Research Laboratory for the
last six or seven years. Thanks are due many colleagues at both institu-
tions and several students for numerous suggestions and valuable crit-
icism. Mrs. Joan Haugen painstakingly typed the manuscript, and Mrs.
Christel Siahatgar prepared most of the extensive tables. Very special
thanks go to these two ladies and to the author’s wife for their help,
patience, and encouragement.
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Classical Radiation Theory

Most of the electromagnetic radiation emitted by gaseous plasmas stems
from atomic processes. Plasma spectroscopy is therefore based on atomie
and plasma physics and requires mainly an understanding of quantum
theory and the statistical mechanies of ionized gases. In both fields the
basic theory is well known. However, much detailed work remains to be
done to elucidate the nature of numerous approximate treatments and to
assess the ranges of applicability and the degree of approximation that
has been achieved.

Because of the merging of d;ﬂ‘erent branches of physics, an unusually
close interplay between theory ‘and experiment is mandatory. In this
respect, plasma spectroscopy tends to follow th%&mple of astrophysies.
Since the development of stars is decisive]y})influenged by radiative energy
transfer and since electromagnew on 1sby far the most important
carrier of information ava‘lla.ble them, as‘tvrogbmers have developed
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2 Plasma spectroscopy

applications of the theory of radiation to these two problems, which pre-
dominate in plasma spectroscopy as well.

Astronomers have felt compelled to resume work on applications of
quantum theory to atomic physics; plasma spectroscopists also must
contribute to the improvement of our knowledge and command of atomic
radiation theory. Besides methods for the determination of plasma
parameters and the investigation of radiative transfer and energy loss
problems, a third main objective of plasma spectroscopy is therefore to
help in the establishment of a reliable system of atomic parameters.

The difficulties in applications of quantum mechanics are hardly ever
of a basic nature. However, experiments are indispensable because
precise calculations are often practically impossible, even with modern
electronic computers, or because no reliable error estimate can be made
for a completed calculation. Both to see more clearly the remaining
problems and also to appreciate the power and reliability of plasma
spectroscopy as a tool, it is best to follow the development of radiation
theory, before the combination with statistical mechanics and more
specific applications are taken up.

1-1 Electromagnetic equations

The rationalized mks system of units is used unless specifically stated
otherwise. (However, working equations will usually be written in such a
way that cgs units can be used as well.) The vacuum values of dielectric
constant and magnetic permeability in the mks system are e = (4n X
9 X 1091 = 8.85 X 10-12 C? N-! m~? and ue = 4r X 1077 = 12.57 X
107 W A-! m~'. The newton is the unit of force (1 N = 10° dyn); the
weber is the unit of magnetic flux (1 W m~2 = 10* G). The units of
charge and current are coulomb and ampere, respectively, and one also
has (eopo)~'f = ¢ = 3 X 103 m/sec.
Maxwell’s equations

curlE + B =0 (1-1a)
divB=0 . (1-10)
curlH — D = j (1-1¢)
divD = (1-1d)

and Lorentz’s force law
F=/pE+jxB (1-2)

form the basis of classical radiation theory. If p is the density of all
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charges, one has simply (in vacuum)
B = uH (1-3a)
D = ¢«E (1-3b)

Furthermore, the current density is for charges of one sign
i=opv (1-4)

where v iz the mean velocity.
It is convenient to introduce vector and scalar potentials through

B = curlA (1-5a)
E= —gradeg — A (1-5b)

This choice automatically fulfills th. first two of Maxwell’s equations.
In addition, one postulates the following Lorentz condition

div A = —eomop (1-6)

Substitution into the last two of Maxwell’s equations, with curl curl
A = grad div A — VA (in cartesian coordinates), yields

2151& — A = peev (1-7a)
1, o 1 ,

— — = — 1‘ b
aé—Ve=_» (1-7b)

A special solution of these inhomogeneous wave equations is obtained
from a generalization of the Coulomb potential as

Ko o'V’
" =2 "  _d 1-8
Adr”,0) 4r [ [t — r'| dr (1-8a)

7
o) = g [ = (1-85)
where p’, v’ are to be taken at r’and ¢’ = ¢ — |’ — r'|/c, the integration
being over all points characterized by r’. That the “retarded” potentials in
Egs. (1-8a) and (1-8b) obey the wave equations (1-7a) and (1-7b) can be
seen as follows: Any function of ¢ = ¢ — [t — r’|/c divided by |t”" — r'|
presents a spherical wave emerging from r’, that is, is a solution of the
homogeneous wave equation for r'’ > r’. On substitution of the poten-
tials into the wave equations, therefore, only points 1’ near 1"’ contribute
to the left-hand side. The remaining integrals over a small sphere with
radius r surrounding 1’ are of the order r? (times the local charge or
current density) and therefore their second spatial derivatives are of the
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order 1. But the second time derivatives divided by ¢? vanish as

w’r’_(Qm' :
= =\x

where w is 8 frequency characterizing the time variations of p or pv,
and )\ is the wavelength of the corresponding radiation. Also, p’(r',t)
and v/(',t') approach p(r”,t) and v(r'’,t), so that the remaining integrals
become just the well-known static solutions which indeed satisfy Egs.
(1-7a) and (1-7b) without the terms involving the time derivative. That
the potentials also obey Lorentz’s condition [Eq. (1-6)] follows simply
from the equation of continuity:

div (ov) + 5 = 0 (1-9)

The retarded potentials are, of course, special solutions of the wave
equations. To obtain the general solution, solutions of the homogeneous
wave equations must be added. For the present purposes, one can assume
that only the vector potential contains such solutions obeying the homo-
geneous wave equation and the simplified Lorentz condition, namely,

1
7 A—-VIA=0 (1-10a)
divA =0 (1-10b)
The corresponding fields B = curl A and E = — A represent transverse

waves, and the required solutions of the inhomogeneous wave equations
are therefore superpositions of transverse waves to the fields derived
from the retarded potentials in Egs. (1-8a) and (1-8b).

1-2 Fields from moving point charges

In spectroscopy one is concerned with radiation whose wavelength is very
much greater than the classical electron radius

e?

=~ 282X 107 A
€0

To

Therefore the structure of the electron is of no consequence; i.e., it can
always be replaced by a point charge with total charge e = fp dr and
mass m. Accordingly, the objective is to express fields and potentials
in terms of total charge e and velocity v of the electron and then to see
under which conditions electromagnetic radiation is produced. For this
purpose, one needs to study the fields produced by moving or, more
precisely, by accelerated point charges.
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Some care must be taken in the evaluation of the retarded potentials
produced by such point charges. In general, the integral fp’ dr’ does not
equal the total charge, because the retarded times are different for differ-
ent volume elements. One may first consider the contribution to the
total charge e for all points that are between radii r and r + dr, measured
from the point at which one wants to know the potentiais. To the charge
p'(r',") dr’ = p' do dr actually present at time ¢’ one must add a term that
compensates for the difference of the charges streaming through the ele-
ments of surface do at r and r + dr, respectively, in the times ¢ — ' = r/c
andt — ' — d' = (r + dr)/c. I 1 is the vector from the field point to the
source point, this difference is —p'v’ - r do dr/cr. That is,

de = (1 +Y—'—r)p'dadr
cr

is the charge that must be assigned to dr’ in order to account for the total
charge. Transformation from the volume element di’ = do dr to the
element of charge de in Eqs. (1-8a) and (1-8b) then yields Lienard’s
and Wiechert’s retarded potentials for point charges,

ev

L. S— -11
A drr 4+ r-V/cit—r/e (1-11a)
1 e
= -11b
v () 4xegr +rev/c Il—r/c a )

Here v, r, and r = |r| must all be taken at the retarded time ¢ — r/c.
The fields produced by a moving point charge follow from Egs.
(1-5a) and (1-5b), finally, as

(For details of the derivation, see, for example, Heitler’s book listed in
the Bibliography at the end of the chapter.) At great distances only the
term containing the acceleration ¥ is significant, because it decays as 1/7,
as compared with the 1/r* dependence of the first term. The magnetic
field is always transverse, but the electric field becomes purely transverse
only at great distances, i.e., in the wave zone. There the Poynting vector
is proportional to r/r® and the energy flux (radiation) is the same through
any surface enclosing the charge.
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1-3 Emission of dipole radiation

The fields from a system of point charges are simply obtained from the
superposition of fields produced by single charges, because Maxwell’s
equations are linear. Usually one is interested in the radiation from a small
number of closely spaced point charges e. that are positioned at
1. = -+ x;, where I is a vector denoting the position of the center of
charge and x: the vector deseribing the displacement of charge k from
this center. Assuming |f| >> |%i| and v/¢ << 1, one then derives from Egs.
(1=12a) and (1=12b) for the part of the field that vanishes only as 1/r

1. E X e
E = 4—1;6_01' x —*‘_Czll..la—“ (1'130‘)

_ 1 T X Zeiy

T dwey  CE? (1-13b)

These fields are therefore proportional to the second time derivative of
the electric dipole moment Ze,x, associated with the system of charges. If
the differences in the retarded times for the various charges are taken
into account and all quantities are calculated to the first order in v/c, one
obtains an additional term that is proportional to the quadrupole moment,
ete. But in plasma spectroscopy one can practically always neglect these
terms because emitting electrons only very rarely approach relativistic
energies. .
The Povnting vector corresponding to the dipole radiation field 13

—1 if X Et’;.-ikpf

S =ExH= 0, o
=1 |Zek:|*H sin’ @ i
= Grte o] (1-14)

where 6 is the angle between the direction of observation and the second
derivative of the dipole moment. Since T is a vector pointing toward the
system of charges, the minus sign indicates that the Poynting vector is in
a direction away from the system, which is as it should be. Integration of
S over a closed surface containing all charges k finally yields the radiated
power

P, = ——1—, [Zerks|? (1-15)
oC

Gre

which is the quantity of primary interest in quantitative spectroscopy.
The harmenic oscillator with Zexi = ex(f) = ex, co8 wot is the sim-
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plest model of a radiating dipole. It emits an average power

_ ewd s elwl .
P‘ - GarToc“ x(t) - 127eoc? Ixol (1-16)

According to Eq. (1-13a), the electric vector is at right angles to the
direction of observation and in the plane containing this direction and
that of xo. The directional dependence of the emitted intensity is given
by the factor sin? @ in Eq. (1-14), with 8 now being the angle between xo
and the radius veetor. (Note also the very strong frequency dependence,
which suggests that short-wavelength line radiation will be rather strong.)

1-4 Absorption by harmonic oscillators

Harmonic oscillators not only emit electromagnetic radiation but also
may extract energy from incident waves. If the wave field is decomposed
into Fourier components, the equation of motion for the oscillator
becomes

£+ wlx = %E cos (wt + 8.) (1-17)

where 4, is the phase of the wave. Assuming that at ¢ = 0 only the free
oscillation is excited, one obtains the solution

x() = L, 03l 8) —cos (h ¥ be) 4 g gin (ut +p) (1-18)
. wl — w?

The absorbed power follows from the rate of work done on the har-
monic oscillator as

dP, = ex(t) - E, cos (wt + b.)

wo
— w?

e? . w . \
= - E? [ — sin (wi + 8.) + sin (wot + 8,,,)]

wi — o? wh

X ¢0s (wt + 8,) + €E. + Xowo c0s (wot + ¢) cos (wi + 8,) (1-19)

In the time average, the term with w/(wp — %) vanishes. If the phases
5, in the incoming light wave are random, the last term also disappears.
Using well-known trigonometric formulas and again assuming the phases
3., to be random, the average absorbed power thus becomes

2 T .
aPo = £ B2 2 [ sin (w0 — w)t] d

Wy — W' T

_f o W 11 — cos [(wo — w)r] (1-20)

"'wo+w; (wo — w)?




