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German intellegt is an excellent thing, but when a
German product is presented it must be analyzed. -
Most probably it is a combination of intellect (I)'
and tobacco-smoke (T'). In many cases metaphysics
(M) occurs and I hold that I, T, M, never occurs
without b + ¢ > 2a.

Augustus de Morgan

Preface

Dear Reader,

The title tells. you that this book deals with ‘nonlinear functional analysis’.
Roughly speaking, (linear) functional analysis is that mathematical discipline
which is concerned with infinite-dimensional topological vector spaces, a fruitful
combination of linear and topological structure, and the study of mappings be-
tween such spaces which respect these structures, i.e. linear maps that are some-
wig2W linked with the topologies of the spaces — continuous linear maps in the
" sk plest case. Originally functional analysis could be understood as a unifying
- bstract treatment of important aspects of linear mathematical models for prob-
1S in science, but the latter receded more and more into the background during
.- s :eintensive theoretical investigations. It was clear from the start that most of the
' linear models are in fact only first approximations to models involving nonlinear
maps. But given that some classes of linear topological spaces had already been
basically understood, it was of course more natural to study linear maps, and this
was further justified by the fact that not a few natural phenomena can be explained
by linearization of nonlinear models. Thus, except for a fruitful period in the
1930s, the abstract treatment of the latter remained in the shade of the linear
theory until a real boom started in the 1960s. Since then the existing methods,
which had existed for thirty years or more, have been considerably extended,
mainly motivated by new types of problems appearing also in nonclassical fields
of application such as biology, chemistry or economics, and many new concepts
and methods have been developed. Today some of these theories are well estab-
lished and have almost reached their boundaries while others are still the subject
of much activity. The purpose of the book is therefore to present a survey of the
main elementary ideas, concepts and methods which constituted nonlinear func-
tional analysis so far. . : :
To explain what we understand by ‘elementary’, let us first remark that we
have tried to present things in such a way that a graduate student can understand
not only what is formally going on but also the spirit of the whole subject and its
relations to adjacent parts of mathematics; so it is clear that one has to invest some
more labour and time than for a conventional introduction to one of the special
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iopics. However, only a modest preliminary knowlgdgc is needed. In the first
chapter, where we introduce an important topological concept, the so-called
topological degree for continuous maps from subsets of R”into K", you nc?ed not
know anything about functional analysis. Starting with Chapter 2, where mﬁmte
dimensions first appear, one should be familiar with the essential step of consider-
ing a sequence or a function of some sort as a point in the corresppndmg vec?or
space of all such sequences or functions, whenever this abstraction is worthwhxl_e.
One should also work out the things which are proved in § 7 and accept certain
basic principles of linear functional analysis quoted there for easier references,
until they are aoplied in later chapters. In other words, even the ‘completely linear’
sections which we have included for your convenience serve only as a vehicle for
progress in nonlinearity. ’

Another point that makes the text introductory is the use of an essentially
uniform mathematical language and way of thinking, one which is no doubt
familiar from elementary lectures in analysis that did not worry much about its
connections with algebra and topology. Of course we shall use some elementary
topological concepts, which may be new, but in fact only a few remarks here and
there pertain to algebraic or differential topological concepts and methods. This
will’become clear as early as the first chapter (where an introduction,-on the same
level, of the basic concepts of algebraic topology needed for degree theory and
some other ideas, would have taken at least as much space) but also in later
chapters, say in §27, where we deal with eertain manifolds yet hardly use the
language of the professionals in the field. This explains why we have described-the,
topological concepts used as ‘elementary’, although we could have similarly de- *
scribed ‘those ideas and concepts from algebraic or differential topology which
‘have been used so far in nonlinear functional analysis, if we had chosen to begii

i

with a different introductory chapter. We will come back to this remark in the ——

epilogue.

Finally, let us mention a few things about ‘examples’ and ‘applications’. As in
the linear case, nonlinear functional analysis starts with the inspection of various
types of equations or questions arising in nonlinear models for problems in, for
example, natural science. Observing a phenomenon shown by such diverse prob-
lems, we may be led to introduce a certain class of nonlinear maps on a certain
class of subsets of a certain class of Banach spaces. This class will then be studied
by, say, analytical, topological or geometric means, first with regard to the phe-
nomenon, but then also for purely theoretical reasons and for interest. Without
saying more, it is clear that a book on this subject must contain examples of
models, examples illustrating concepts and methods, and examples illustrating
how the abstract results can be applied to the questions arising in a ‘concrete’
model or in other abstract contexts. In almost all cases we have deliberately
chosen the simplest significant class of concrete equations or problems to which
an abstract result applies. .

Having explained for which reasons the book was written and what is needed
to understand it, let us explain how it is organized. There are thirty sections
arranged in ten groups called chapters. Every chapter has an introduction which
explains what you will find there and how it is related to earlier chapters. It is
necessary but of course not sufficient to read these introductions, Every section
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ends with final remarks and exercises. Some of these remarks will become clearer
when you see them in the context of final remarks to later sections. The exercises
range from almost obvious to by no means obvious. Only the major concepts are
recorded in definitions, others can be rediscovered by means of the inde:x. Refer-
ences are indicated by names followed by numbers in square brackets which you
find in the bibliography. The latter contains most of the relevant books, lecture
notes and survey articles up to date, but the selection of other research papers is
more personal. The numbering of theorems etc. is evident: for example Theorem
15.8 means Theorem 8 in § 15. )

Now knowing that writing a book is a waste of time unless somebody is going
to publish it and that the long road from the first handwritten version to the final
form of the manuscript could not be managed without considerable help from
others, I have great pleasure in thanking the publishers for fruitful collaboration;
Mr. Alan Whittle for his hard work in replacing a lot of Germanisms by (some-
times too) proper English; Mrs. Walburga Kropp for typing the manuscript even
with enthusiasm and never grumbling at a lot of changes; mpy wife Brigitte for
preparing the index and designing the bifurcation ghost (Fig. 29.1); Dipl. Math.
Dieter Péschke for drawing the figures and reading proofs; colleagues who send
me re- and preprints. I am especially grateful to Drs. Sonke Hansen, Harald
Monch and Jan PriiB for a lot of discussions and helpful suggestions which
considerably improved the content of the book. ‘

Paderborn, autumn 1984 Klaﬁs Deimling
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Everything should be made as simple as possible,
but not simpler.  Albert Einstein

When a mathematician has no more ideas,
he pursues axiomatics. . .
p Felix Klein

I hope, good luck lies in odd numbers ...
They say, there is divinity in odd numbers,
either in nativity, chance, or death.
William Shakespeare

Chapter 1. Topological Degree in Finite Dimensions

In this basic chapter we shall study some basic problems concerning equations of
the form f (x) = y, where f is a continuous map from a subset 2 < R" into R" and
y is a given point in R". First of all we want to know whether such an equation
has at least one solution x € Q. If this is the case for some equation, we are then
interested in the question of whether this solution is unique or not. We then also
want to decide how the solutions are distributed in . Once we have some answers
for a particular equation, we need also to study whether these answers remain the
same or change drastically if we change f and y in some way. It is most probable
that you have already been confronted, more or less explicitly, by all these ques-
tions at this stage in your mathematical development.

Let us review, for example, the problem of finding the zeros of a polynomial.
First we learn that a real polynomial need not have a real zero. Then we are taught
that a real polynomial of odd degree, say p; m+1 () = £2™*! + p,.(t), has a real
zero, and you will recall the simple proof which exploits the fact that p,,(t) is
‘negligible’ relative to t2™ ! for large ¢, and therefore p,,,+,(t) > 0 for ¢t = r and
Pam+1{t) < Ofort £ — r with r sufficiently large, which in turn implies that p, 4 4
has a zero in (- r, r), by Bolzano’s intermediate value theorem. Next we learn that
every polynomial of degree m = 1 has at least one zero in the complex plane €.
Then we introduce the multiplicity of a zero z,. If this is &, then z, is counted k
times, and by means of this concept the more precise statement is arrived at that
every polynomial of degree m 2 1 has exactly m zeros in €. At this stage the
problem of finding the zeros of a polynomial over € is solved for the pure
algebraist and he will turn to the same question for more general functions over
more general structures. The ‘practical’ man, if he is fair, will appreciate that the
‘pure’ fellows have proved a nice theorem, but it does not satisfy his needs.
Suppose that he is led to investigate the behaviour as t — oo of solutions of a linear
system x’ = Ax of ordinary differential equations, where 4 is an n x n matrix.
Then the information that the characteristic polynomial of 4 has exactly n zeros
in €, the eigenvalues of 4, is not enough for him since he has to know whether they
are in the left or right half plane or on the imaginary axis. In another situation he
may have obtained his polynomial by interpolation of certain experimental data
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which usually contain some hopefully small errors. Then he may need to know
that the zeros of polynomials close to p are close to the zeros of p.

Now, we want to construct a tool, the topological degree of f with respect to
2 and y, which is very useful in the investigation of the problems mentioned at the .
fbeginning. To motivate the process, let us recall the winding number of plane
curves and its connection with theorems on zeros of analytic functions. If yo
missed this topic in an elementary course in complex analysis, you may either
consult Ahlfors [1], Dieudonné [1], Krasnoselskii et al. [1], or believe in what we
are going to mention in the sequel, since we shall indicate in § 6.6 how the winding
number is related to the degree in the case of R2.

Let I' = € be an oriented closed curve with the continuously differentiable (C!
for short) representation z(t) (¢t € [0, 1], z(0) = z(1)) and let a e C\I". Then, the
integer
(1) w(l a) = 2_1_, dz — _1_ :[ x(t) y' (1) — x'(t) y(1)

mirz—a 2n x2(2) + y2(2)
for z@)=x(@®O +iy(t)+a

is called the winding number (or index) of I" with respect to a € C\TI; since it tells
us how many times I" winds around a, roughly speaking. If I is only continuous
then we can approximate I" as closely as we wish by C'-curves, and it is easy to
see that all these approximations have the same winding number provided that
they are sufficiently close to I'. More precisely, if z, (£) and z,(t) are C*-representa-
tions of the closed curves I7 and I, with the same orientation as I" and are such
that
max {|z;(t) —z(t)|:t€[0,1]} <min{|a — z(¢)]: t€[0,1]} for j=1,2

then w(l;, a) = w(I;, a). Therefore, we can define w(l; a) to be w(l, a) for any
such I . Then we have defined .

w: {(I; a): T closed continuous, a e C\I'} - Z

and it is not hard to see that this function w has the following properties: -

(a) wis continuous in ([, a), i.c. constant in some neighbourhood of (I a).

(b) w(I, -)is constant on every connected component of C\I" ~ in particular, equal
to zero on the unbounded component.

(c) If the curves Iy and I are homotopic in €\ {a}, then w(Il}, a) = w(I;, a). More -
explicitly, let z,(t) and z, (t) be representations of Iy and I such that there exists
a continuous k: [0, 1] x [0, 1]— €\ {a} satisfying h(0, t) = zo(t) and h(1, 1) = z,(t) -
in [0, 1]and h(s, 0) = h(s, 1) forevery s € [0, 1]; then w(I}, a) is the same integer for -
all s € [0, 1], where I} is the closed curve represented by A(s, *).

(d) If I'" denotes the curve I' with its orientation reversed, then w(I' ", a)'
— —w(lla).

Property (c) is the most important ore, since it allows us for example to

- calculate the winding number of a complicated curve by means of the winding

% number of a possibly simpler homotopic curve. Furthermore, (a) and (b) are
simple consequences of (c).
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Now, let G < € be a simplv connected region, f: G- Cbe analyticandI'= G
be a closed C*-curve such that f(z) + 0 on I'. Then the ‘argument principle’ tells
us that

I

f@

e w0 =5 [ B LS
r

anfr) z

iz =S wihzym,

where the z, are the zeros of f in the regions enclosed by I' and the a, are the

corresponding multiplicities. If we assume in addition that I'" has positive orien-
tation and no intersection points, then we know from Jordan’s curve theorem,
which will be proved in this chapter, that there is exactly one région G, < G
enclosed by I, and w(l| zo) = 1 for every z, € G,. Thus, (2) becomes

W(f(r)’ 0) = % X

i.e. the total number of zeros of f in G, is obtained by calculating the winding
number of the image curve f (") with respect to 0. In general, w(I z,) can also be
negative and then we can only conclude that f has at least {w(f(I'), 0)| zeros in
the regions enclosed by I'.

In the more general case cf continuous maps from subsets of R” into R” we
shall imitate these ideas. We consider open bounded subsets 2 = IR” instead of the
regions enclosed by I, continuous maps f: & - R"and points y € R” which do not
belong to the image f(09) of the boundary of Q. With each such ‘admissible’
triple (f, 22, y) we associate an integer d(f, £, y) such that the properties of the
function d allow us to give significant answers to the questions raised at the
beginning. Of course, as in daily life, we cannot achieve everything, but the follow-
ing minimal requirements and their useful consequences turn out to be a good
compromise.

The first condition is simply a normalization. If f = id, the identity map of R"
defined by ld(x) = x, then f (x) = y € Q has the unique solution x = y, and there-
fore we require ,

d1 d@id,2,y)=1 for yeQ. . -

The second condition is a natural formulation of the desire that d should yield
information on the location of solutions. Suppose that Q; and @, are disjoint open

subsets of 2 and suppose that j"(x) = y has finitely many solutions in 2, U ©, but

no solution in O\(22; v ©2,). Then the number of solutions in Q is the sum of the
numbers of solutions in Q, and Q,, and this suggests that d should be additive in
its argument Q, that is

d2) d(f£ 2 y)=4d(f Q,,y)+4d(f, 2,,y) whenever Q, and @, are disjoint

' open subsets of 2 such that y ¢ £ (Q\(2; U 2,)). -

The third and last condition reflects the desire that for complicated f the
number d(f, £, y) can be calcuvlated by d(g, £, y) with simpler g, at least if f can

'
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be continuously deformed into g such that at no stage of the deformation we get
solutions on the boundary. This leads to

(d3) d(h(t,+), 2, y(t) is independent of t € J = [0, 1] whenever h: J X Qv—v R”
and y: J — R" are_continuous and y(f) ¢ h(t,02) for all t e J.

There are essentially two different approaches to the construction of such a
function d. The older one uses only concepts from algebraic topology, which is
quite natural, since (d 1)—(d 3) involve only topological concepts such as open sets
and continuous maps and a ‘little bit’ theory of groups like Z; see, for example,
Alexandroff and Hopf [1], Cronin [2], Dold [2], Dugundji and Granas {1].

We shall present the more recent second approach which is simpler for ‘true’
analysts, not worrying much about topology and algebra, since it uses only some
basic analytical tools such as the approximation theorem of K. Weierstral3, the
implicit function theorem and the so-called lemma of Sard (see § 2). Presentations
still using topological arguments can be found in books on differential topology,
for example, in Guillemin and Pollack [1], Hirsch [1] and Milnor (2], while purely
analytical versions have been given by Nagumo [1]and Heinz {1]in the 1950s. An
interesting mixture of the two methods has been given in Peitgen and Siegberg [1]
~ an outgrowth of recent efforts in finding numerical approximations to degrees
and fixed points, based on the observation that the essential steps of the old
method can be put into the form of algorithms.

In principle, it is an inessential question how we introduce degree theory, since
there is only one Z-valued function d satisfying {d 1)—(d 3), as you will see in § 1,
and since it are the properties of d which count, as you will see throughout this
chapter. Starting with the uniqueness of d, by exploiting (d 1)—(d 3) until we end
up with the simplest case f(x) = Ax with det 4 + 0, has the advantage that the
basic formula, which a purely analytical definition has to start with, does not fall
from heaven — it is enough that the natural numbers do (according to
L. Kronecker) — and that we are already motivated to introduce some prerequi-
sites which we need anyway later on. However, you will keep in mind that choos-
ing the analytical approach we lose topological insight to a considerable extent,
while going through the mill of the elements of combinatorial topology you will
hardly become aware of the fact that the same goal can be arrived at so simply by
an analytical procedure. Thus, the essential question is why we introduce degree
theory, but this has already been answered by the general remarks given in the
foreword and the more special ones in this introduction which we are going to
close by a few historical remarks. _

The winding number is a very old concept. Its essentials can already be found
in papers of C. F. GauB and A. L. Cauchy at the beginning of the 19th century.
Later on L. Kronecker, J. Hadamard, H. Poincaré and others extended formula
(1) by consideration of integrals of differentiable maps over {x e R™: x| = 1}.
Finaliy, L. E. J. Brouwer established the degree for continuous maps in 1912. It ic
now tradition to speak of the Brouwer degree. The way towards an analytical
definition was paved by A. Sard’s investigation of the measure of the critical
values of differentiable maps in 1942. You will find much more in the interesting
papers of Siegberg (1], {2].
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§ 1. Uniqueness of the Degree

In this section we shall show that there is only one function

d: {(f, 2, y): 2 = R” open and bounded, f:Q — R" continuous,

ye R\ f(0Q)} - Z
satisfying S

(d1) d(id,Q2,y)=1foryeQ

(d2) d(f, 2, y) =d(f, 824, y) + d([, 2,, y) whenever Q, , 2, are disjoint open sub-
sets of 2 such that y ¢ f (2\(2, v 2;)).

(d3) d(h(z, +), 2, y(t)) is independent of t € J = [0, 1] whenever h:J x € - R" is
‘continuous, y: J - R" is continuous and y(t) ¢ h(t, 0Q2) for all t e J.

This will be done by reduction to more agreeable conditions, the final one being
the case where f is linear, i.e. f(x) = Ax with det A + 0. During the simplifying
process we introduce basic tocls which are also needed for the construction of the
function d in § 2, and you will see already here that the homotopy invariance (d 3)
of d is a very powerful property.

Let us start with some notation for the whole chapter.

1.1 Notation. We let R" = {x = (x;,...,x,):x; € R for i =1,...,n} with
n \1/2 . . _
x| = ( > x?) . For subsets 4 < R" we use the usual symbols A4, 04 to de-
i=1

note the closure and the boundary of A, respectively. If also B < R” then
B\A = {x € B:x ¢ A}, which may be the empty set §. The open and the closed ball
of centre x, and radius r > 0 will be denoted by

B,(xg) = {xeR":|x — 5| <r} = x4 + B,(O).‘ and B,(x,) = B,(xo).

Unless otherwise stated, 2 is always an open bounded subset of R".

For mapsfiAcR"->R" we let f(d)={f(x):xeA} and [ '(y)
= {x € A:f (x) = y}. The identity of R" is denoted by id, ie. id(x) = x for all
x € R”. Linear maps will be identified with their matrix 4 = (a;;) and we write
det A for the determinant of A. We shall also use L. Kronecker’s symbol 5,1,
defined by gj=1fori=jand ;=0 for i +7, so that id = ((5,,) IfBcR"is
compact, i.e. closed and bounded, then C(B) is the space of continuous f: B —» R",
and we let ||, = max |f (x)| for fe C(B). We shall write fe C(B; R™) to empha-

size f(B) = R™, if necessary
You will recall that f: Q — R" is said to.be differentiable at x, if there is a
matrix f'(x,) such that .

f(xo+ h)= f(xo)+f(x0)h+w(h) for heQ —xq={x — xq:x€£}

where the remamder w(h) satisfies [ ()| < ¢ |h|for |A| £ 0 = d(e, x,). In this case
S (Xo)ij = 8; filxo) = Ofi(xo)/)x;, the partial derivative of the ith component f;
with respect to x;.



