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Preface

The third edition of this textbook sees additions and deletions but no philosophical
change. The basic outline of eleven chapters and five appendixes remains the same.
The triad of integral, differential, and experimental approaches is retained. The informal,
student-oriented style is retained. On the other hand, many problem exercises and some
fully worked examples have been changed, and a number of new photographs and
figures have been added.

The total number of problem exercises continues to increase, from 1089 in the first
edition, to 1169 in the second, to 1392 in this third edition. About 750, or 53 percent,
of the present problems are new. Also new to this edition are ninety-one word problems,
or “‘thought exercises,”” and, also a first, there are nine design projects: more extensive,
open-ended exercises which challenge the student to obtain parameter studies and flow
optimizations without knowing any obvious exact ‘‘answers.”’

There are some revisions in every chapter, with the most extensive being in Chapters
3,4,7, 8, and 10. Chapter 1—which is purely introductory and could be assigned as
reading-—continues to be toned down from earlier editions. I am trying to accept the
constant reviewer suggestions that this chapter can do without such detailed discussions.

Chapter 2 is improved by a better discussion of the stability of floating bodies, with
a simpler procedure for computing the metacentric height. Coverage is confined to static
fluids and rigid-body motions.

Chapter 3 has been rearranged so that Bernoulli’s equation comes last, after control-
volume mass, linear momentum, angular momentum, and energy studies. I know that
some texts have an entire chapter on the Bernoulli equation, but it is a dangerously
restrictive relation which is often misused by both students and graduate engineers.

Chapter 4 used to be confined solely to the basic partial differential equations of fluid
mechanics, but now a few solutions are included also, for both potential flow and
viscous flow. This meant bringing forward some viscous material from Chapter 6 and
some inviscid flow from Chapter 8. Both reviewers and students complained that they
wanted to see some applied results right after covering the equations themselves. If you
disagree with this, just hold back and treat Sections 4.10 and 4.11 later in your course.

Chapter 5 has been slightly modified to approach dimensional analysis from the point
of view of selecting scaling variables before using the pi theorem. Students have always
complained that the pi theorem is too ambiguous, leading to a multitude of different
. parameter groups. By deciding in advance how to scale and present the data, the am-
biguity is reduced or eliminated. Section 5.6, on *‘inventive use of the data,”” has been
eliminated, made unnecessary by scaling concepts.



xii Preface

In Chapter 6, Section 6.5 on ‘‘alternate forms of the Moody chart’” has been dropped
and replaced by a standard presentation of the three basic pipe-flow computations:
pressure drop, flow rate, and pipe sizing. I liked the ‘‘alternate forms,’’ obviously, but
no one else did. I have also introduced some newer types of flow meters for further
enrichment.

Chapter 8 now picks up from the sample plane potential flows of Section 4.10 and
plunges right into inviscid-flow analysis. The method of boundary elements is now
introduced briefly because it is a simple and powerful technique which is very popular
in industry.

In the study of gradually varied open-channel flow, Section 10.6, the older tabular
method of computation has been replaced by a direct numerical integration. Students
are now quite familiar with numerical techniques such as Runge-Kutta and need not
use a table or spreadsheet.

Some additional fluid properties and correlation formulas have been included in the
appendixes, which are otherwise much the same.

This text now includes some elegant software, prepared by Password, Inc., of Bal-
timore, Maryland, to help the student learn fluid mechanics and to illustrate certain
topics. A diskette is included in the back of the book and is available for both Macintosh
and PC Windows systems. The software is divided into seven numbered sections, or
scenarios, as follows:

. Viscosity and density of gases at various temperatures.
. Viscosity and density of liquids at various temperatures.
. Hydrostatic pressure and force on immersed plates.
. Force required to support a fluid jet turning through an angle.
. Three types of pipe flow calculations using the Moody chart:
a. Pressure drop for known flow rate and pipe size.
b. Flow rate for known pressure drop and pipe size.
c. Pipe size for known flow rate and pressure drop.
6. Plane potential flow patterns illustrated in detail:
a. A source near a plane wall.
b. Two equal vortices of like sense.
c. Two equal vortices of unlike sense.
d. The Rankine oval of arbitrary aspect ratio.
7. Compressible flow of an ideal gas:
Isentropic nozzle flow with area changes.
The normal shock wave.
Constant-area duct flow with friction.
Constant-area frictionless duct flow with heat transfer.
Oblique shock waves.
Prandtl-Meyer supersonic expansion waves.
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When one of these topics appears in the text, a numbered computer-disk icon will appear
in the text margin to key the reader toward the software. I have found this software to
be very helpful and educational, and recommend that it be installed and used in your
course. It is quite easy to use.
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1.1 Preliminary Remarks

apter 1
Intro uction

Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid
statics) and the subsequent effects of the fluid on the boundaries, which may be either
solid surfaces or other fluids. Both gases and liquids are classified as fluids, and the
number of fluids engineering applications is enormous: breathing, blood flow, swim-
ming, pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes, missiles, icebergs,
engines, filters, jets, and sprinklers, to name a few. When you think about it, almost
everything on this planet either is a fluid or moves with respect to a fluid.

The essence of the subject of fluid flow is a judicious compromise between theory
and experiment. Since fluid flow is a branch of mechanics, it satisfies a set of well-
documented basic conservation laws, and thus a great deal of theoretical treatment is
available. The theory is often frustrating, however, because it applies mainly to certain
idealized situations which may be invalid in practical problems. The two chief obstacles
to a workable theory are geometry and viscosity. The general theory of fluid motion
(Chap. 4) is too difficult to enable the user to attack arbitrary geometric configurations,
so that most textbooks concentrate on flat plates, circular pipes, and other easy geom-
etries. It is possible to apply numerical techniques to arbitrary geometries, and special-
ized textbooks are now appearing which explain these digital-computer approximations
[1, 2].! This book will present many theoretical results while keeping their limitations
in mind.

The second obstacle to a workable theory is the action of viscosity, which can be
neglected only in certain idealized flows (Chap. 8). First, viscosity increases the diffi-
culty of the basic equations, although the boundary-layer approximation found by Lud-
wig Prandtl in 1904 (Chap. 7) has greatly simplified viscous-flow analyses. Second,
viscosity has a destabilizing effect on all fluids, giving rise, at frustratingly small ve-
locities, to a disorderly, random phenomenon called turbulence. The theory of turbulent
flow is crude and heavily backed up by experiment (Chap. 6), yet it can be quite
serviceable as an engineering estimate. Textbooks are beginning to present digital-
computer techniques for turbulent-flow analysis [3], but they are based strictly upon
empirical assumptions regarding the time mean of the turbulent stress field.

Thus there is theory available for fluid-flow problems, but in all cases it should be

! Numbered references appear at the end of each chapter.




2 Introduction

1.2 The Concept of a Fluid

backed up by experiment. Often the experimental data provide the main source of
information about specific flows, such as the drag and lift of immersed bodies (Chap.
7). Fortunately, fluid mechanics is a highly visual subject, with good instrumentation
[4, 5], and the use of dimensional analysis and modeling concepts (Chap. 5) is wide-
spread. Thus experimentation provides a natural and easy complement to the theory.
Appendix C lists a variety of interesting films which have been prepared to visualize
fluid-flow phenomena. You should keep in mind that theory and experiment should go
hand in hand in all studies of fluid mechanics.

From the point of view of fluid mechanics, all matter consists of only two states, fluid
and solid. The difference between the two is perfectly obvious to the lay person, and
it is an interesting exercise to ask a lay person to put this difference into words. The
technical distinction lies with the reaction of the two to an applied shear or tangential
stress. A solid can resist a shear stress by a static deformation; a fluid cannot. Any
shear stress applied to a fluid, no matter how small, will result in motion of that fluid.
The fluid moves and deforms continuously as long as the shear stress is applied. As a
corollary, we can say that a fluid at rest must be in a state of zero shear stress, a state
often called the hydrostatic stress condition in structural analysis. In this condition,
Mohr’s circle for stress reduces to a point, and there is no shear stress on any plane cut
through the element under stress.

Given the definition of a fluid above, every lay person also knows that there are two
classes of fluids, liquids and gases. Again the distinction is a technical one concerning
the effect of cohesive forces. A liquid, being composed of relatively close-packed mol-
ecules with strong cohesive forces, tends to retain its volume and will form a free surface
in a gravitational field if unconfined from above. Free-surface flows are dominated by
gravitational effects and are studied in Chaps. 5 and 10. Since gas molecules are widely
spaced with negligible cohesive forces, a gas is free to expand until it encounters con-
fining walls. A gas has no definite volume, and when left to itself without confinement,
a gas forms an atmosphere which is essentially hydrostatic. The hydrostatic behavior
of liquids and gases is taken up in Chap. 2. Gases cannot form a free surface, and thus
gas flows are rarely concerned with gravitational effects other than buoyancy.

Figure 1.1 illustrates a solid block resting on a rigid plane and stressed by its own
weight. The solid sags into a static deflection, shown as a highly exaggerated dashed
line, resisting shear without flow. A free-body diagram of element A on the side of the
block shows that there is shear in the block along a plane cut at an angle 6 through A.
Since the block sides are unsupported, element A has zero stress on the left and right
sides and compression stress ¢ = —p on the top and bottom. Mohr’s circle does not
reduce to a point, and there is nonzero shear stress in the block.

By contrast, the liquid and gas at rest in Fig. 1.1 require the supporting walls in order
to eliminate shear stress. The walls exert a compression stress of — p and reduce Mohr’s
circle to a point with zero shear everywhere, i.e., the hydrostatic condition. The liquid
retains its volume and forms a free surface in the container. If the walls are removed,
shear develops in the liquid and a big splash results. If the container is tilted, shear
again develops, waves form, and the free surface seeks a horizontal configuration,
pouring out over the lip if necessary. Meanwhile, the gas is unrestrained and expands
out of the container, filling all available space. Element A in the gas is also hydrostatic



Fig. 1.1 A solid at rest can resist
shear. (a) Static deflection of the
solid; (b) equilibrium and Mohr’s cir-
cle for solid element A. A fluid can-
not resist shear. (¢) Containing walls
are needed; (d) equilibrium and
Mohr’s circle for fluid element A.

1.2 The Concept of a Fluid 3

Static Free
deflection surface

P — =0

-p ‘

T
(1) .
Hydrostatic
condition
20 o o
_pu
(®)

(d)

and exerts a compression stress — p on the walls.

In the above discussion, clear decisions could be made about solids, liquids, and
gases. Most engineering fluid-mechanics problems deal with these clear cases, i.e., the
common liquids, such as water, oil, mercury, gasoline, and alcohol, and the common
gases, such as air, helium, hydrogen, and steam, in their common temperature and
pressure ranges. There are many borderline cases, however, of which you should be
aware. Some apparently *‘solid’” substances such as asphalt and lead resist shear stress
for short periods but actually deform slowly and exhibit definite fluid behavior over
long periods. Other substances, notably colloid and slurry mixtures, resist small shear
stresses but *‘yield’’ at large stress and begin to flow as fluids do. Specialized textbooks
are devoted to this study of more general deformation and flow, a field called rheology
[6]. Also, liquids and gases can coexist in two-phase mixtures, such as steam-water
mixtures or water with entrapped air bubbles. Specialized textbooks present the analysis
of such rwo-phase flows [7]. Finally, there are situations where the distinction between
a liquid and a gas blurs. This is the case at temperatures and pressures above the so-
called critical point of a substance, where only a single phase exists, primarily resem-
bling a gas. As pressure increases far above the critical point, the gaslike substance
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1.3 The Fluid as a Continuum

Fig. 1.2 The limit definition of con-
tinuum fluid density: (a) an elemental
volume in a fluid region of variable
continuum density; (b) calculated
density versus size of the elemental
volume.

becomes so dense that there is some resemblance to a liquid and the usual thermody-
namic approximations like the perfect-gas law become inaccurate. The critical temper-
ature and pressure of water are T, = 647 K and p. = 219 atm,' so that typical problems
involving water and steam are below the critical point. Air, being a mixture of gases,
has no distinct critical point, but its principal component, nitrogen, has 7, = 126 K
and p, = 34 atm. Thus typical problems involving air are in the range of high tem-
perature and low pressure where air is distinctly and definitely a gas. This text will be
concerned solely with clearly identifiable liquids and gases, and the borderline cases
discussed above will be beyond our scope.

We have already used technical terms such as fluid pressure and density without a
rigorous discussion of their definition. As far as we know, fluids are aggregations of
molecules, widely spaced for a gas, closely spaced for a liquid. The distance between
molecules is very large compared with the molecular diameter. The molecules are not
fixed in a lattice but move about freely relative to each other. Thus fluid density, or
mass per unit volume, has no precise meaning because the number of molecules oc-
cupying a given volume continually changes. This effect becomes unimportant if the
unit volume is large compared with, say, the cube of the molecular spacing, when the
number of molecules within the volume will remain nearly constant in spite of the
enormous interchange of particles across the boundaries. If, however, the chosen unit
volume is too large, there could be a noticeable variation in the bulk aggregation of the
particles. This situation is illustrated in Fig. 1.2, where the ‘‘density’’ as calculated from
molecular mass ém within a given volume &V is plotted versus the size of the unit
volume. There is a limiting volume 87* below which molecular variations may be
important and above which aggregate variations may be important. The density p of a
fluid is best defined as
. om
p= lm — (1.1)
V> 5V*

The limiting volume &V* is about 10 ~? mm? for all liquids and for gases at atmospheric
pressure. For example, 10~? mm? of air at standard conditions contains approximately

! One atmosphere equals 2116 Ibf/ft> = 101,300 Pa.

p Microscopic
Elemental uncertainty
volume = 3
p = 1000 kg/m Macroscopic

uncertainty

1200 ———-

0 8U* =10 mm3 80

Region containing fluid

(a) ®)
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3 X 107 molecules, which is sufficient to define a nearly constant density according to
Eq. (1.1). Most engineering problems are concerned with physical dimensions much
larger than this limiting volume, so that density is essentially a point function and fluid
properties can bethought of as varying continually in space, as sketched in Fig. 1.2a.
Such a fluid is called a continuum, which simply means that its variation in properties
is so smooth that the differential calculus can be used to analyze the substance. We
shall assume that continuum calculus is valid for all the analyses in this book. Again
there are borderline cases for gases at such low pressures that molecular spacing and
mean free path' are comparable to, or larger than, the physical size of the system. This
requires that the continuum approximation be dropped in favor of a molecular theory
of rarefied-gas flow [8]. In principle, all fluid-mechanics problems can be attacked from
the molecular viewpoint, but no such attempt will be made here. Note that the use of
continuum calculus does not preclude the possibility of discontinuous jumps in fluid
properties across a free surface or fluid interface or across a shock wave in a compress-
ible fluid (Chap. 9). Our calculus in Chap. 4 must be flexible enough to handle discon-
tinuous boundary conditions.

A dimension is the measure by which a physical variable is expressed quantitatively.
A unit is a particular way of attaching a number to the quantitative dimension. Thus
length is a dimension associated with such variables as distance, displacement, width,
deflection, and height, while centimeters and inches are both numerical units for ex-
pressing length. Dimension is a powerful concept about which a splendid tool called
dimensional analysis has been developed (Chap. 5), while units are the nitty-gritty, the
number which the customer wants as the final answer.

Systems of units have always varied widely from country to country, even after
international agreements have been reached. Engineers need numbers and therefore unit
systems, and the numbers must be accurate because the safety of the public is at stake.
You cannot design and build a piping system whose diameter is D and whose length
is L. And U.S. engineers have persisted too long in clinging to British systems of units.
There is too much margin for error in most British systems, and many an engineering
student has flunked a test because of a missing or improper conversion factor of 12 or
144 or 32.2 or 60 or 1.8. Practicing engineers can make the same errors. The writer is
aware from personal experience of a serious preliminary error in the design of an aircraft
due to a missing factor of 32.2 to convert pounds of mass to slugs.

In 1872 an international meeting in France proposed a treaty called the Metric Con-
vention, which was signed in 1875 by 17 countries including the United States. It was
an improvement over British systems because its use of base 10 is the foundation of
our number system, learned from childhood by all. Problems still remained because
even the metric countries differed in their use of kiloponds instead of dynes or newtons,
kilograms instead of grams, or calories instead of joules. To standardize the metric
system, a General Conference of Weights and Measures attended in 1960 by 40 coun-
tries proposed the International System of Units (SI). We are now undergoing a painful
period of transition to SI, an adjustment which may take the remainder of this century
to complete. The professional societies have led the way. Since July 1, 1974, SI units

! The mean distance traveled by molecules between collisions.




6 Introduction

Table 1.1 Primary Dimensions
in SI and BG Systems

Table 1.2 Secondary Dimensions
in Fluid Mechanics

Primary dimension SI unit BG unit Conversion factor
Mass {M} Kilogram (kg) Slug 1 slug = 14.5939 kg
Length (L} Meter (m) Foot (ft) 1ft = 0.3048 m
Time {T} Second (s) Second (s) Is=1s
Temperature {0} Kelvin (K) Rankine (°R) 1K = 1.8°R

have been required by all papers published by the American Society of Mechanical
Engineers, which prepared a useful booklet explaining the SI [9]. The present text will
use SI units together with British gravitational (BG) units.

In fluid mechanics there are only four primary dimensions from which all other
dimensions can be derived: mass, length, time, and temperature.! These dimensions
and their units in both systems are given in Table 1.1. Note that the kelvin unit uses no
degree symbol. The braces around a symbol like {M} mean ‘‘the dimension’’ of mass.
All other variables in fluid mechanics can be expressed in terms of {M}, {L}, {T}, and
{®}. For example, acceleration has the dimensions {LT~2}. The most crucial of these
secondary dimensions is force, which is directly related to mass, length, and time by
Newton’s second law

F = ma 1.2)

From this we see that, dimensionally, {F} = {MLT2}. A constant of proportionality
is avoided by defining the force unit exactly in terms of the primary units. Thus we
define the newton and the pound of force

1 newton of force = 1 N = 1 kg - m/s?

(1.3)
1 pound of force = 1 Ibf = 1 slug - ft/s*> = 4.4482 N

In this book the abbreviation Ibf is used for pound-force and /b for pound-mass. If
instead one adopts other force units such as the dyne or the poundal or kilopond or
adopts other mass units such as the gram or pound-mass, a constant of proportionality
called g, must be included in Eq. (1.2). We shall not use g, in this book since it is not
necessary in the SI and BG systems.

VIf electromagnetic effects are important, a fifth primary dimension must be included, electric current {/},
whose SI unit is the ampere (A).

Secondary dimension ST unit BG unit Conversion factor
Area {L?} m? fi? I m? = 10.764 fi
Volume {L3} m? ft3 I m® = 35315
Velocity {LT') m/s ft/s 1 ft/s = 0.3048 m/s
Acceleration {LT~?} m/s? ft/s? 1 ft/s®> = 0.3048 m/s>
Pressure or stress

{ML™'T~?) Pa = N/m? Ibf/ft 1 Ibf/ft®> = 47.88 Pa
Angular velocity {T~'} s~! s! 1s7'=1s"!
Energy, heat, work

{ML?T~2} J=N-m ft - Ibf 1ft-1bf = 1.3558 J
Power {ML?T~3} W =1]/s ft - Ibf/s 1 ft-1bf/s = 1.3558 W
Density {ML~3} kg/m? slugs/ft> 1 slug/ft* = 515.4 kg/m?
Viscosity {ML~'T~!} kg/(m - s) slugs/(ft - s) 1 slug/(ft-s) = 47.88 kg/(m - s)

Specific heat {L*T20~'} m?/(s? - K) ft2/(s2 - °R) 1 m?/(s®- K) = 5.980 ft2/(s - °R)




