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Abstract

This thesis is concerned with the problem of reconstructing a discrete two-dimensional
signal of known support from the Fourier transform magnitude only. This problem
arises in many fields where imaging is desired, such as astronomy and wavefront sens-
ing.

Since the autocorrelation function is easily calculated from the Fourier transform
magnitude, we attack the equivalent problem of signal reconstruction from a known
autocorrelation function. The main result of the thesis is a new algorithm for realizing
this reconstruction. This algorithm is guaranteed to yield the correct solution given
accurate measurements and is much more computationally attraciive than previous
reconstruction algorithms. The result is based on the detailed analysis of the zeros
of a polynomial which is essentially the two-dimensional z-transform of the known
autocorrelation signal. From this analysis, a large number of zeros of the z-transform
of the unknown discrete signal are extracted. This set of zeros is then used to extract
the signal values via the solution of a set of linear equations.

Examples of the application of this algorithm to several families of images is pre-
sented, along with a discussion of the accuracy and computational requirements of the
new algorithm. We conclude with a discussion of the application of the ideas of this
thesis to the area of two-dimensional filter design and stability testing.
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Chapter 1

Introduction

The magnitude and phase of the Fourier transform of a.n arbitrary muitidimensional
signal are independent functions of frequency. In many applications, however, there
is additional information regarding the signal which provides a very strong connection
between its Fourier transform magnitude and phase. One example of such additional
information is tﬁe common condition that the signal is non-zero only over a specified
region. In this case, it has been shown that almost all muitidimensional signals which
are non-zero only over a specified region are uniquely specified, in a sense, by knowi-
edge of only its Fourier transform magnitude [1,2]. Hence, once the Fourier transform
magnitude is known, the Fourier transform phase is determined as well. For this rea-
son, the problem of reconstruction from Fourier transform magnitude is also called the
phase retrieval problem.

The reconstruction of a two-dimensional signal from its Fourier transform magni-
tude has been the object of much study. This interest is guided by the wide range of

applications of results in this area. One such application is in astronomy [3]. The effect
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limiting the resolution capabilities of the largest optical telescopes is not the diffraction
limit of the lens, but rather the turbulence of the earth’s atmosphere. During a short
time period, the atmosphere can be considered t{o introduce on the incoming optical
wave a spatially varying, time-invariant random phase delay due to inhomogeneities
induced by thermal gradients. These inhomogeneities are slowly varying with respect
to short exposure times. Thus, over such a short time period, the atmosphere can be
modeled as a glass plate of spatially varying thickness over the telescope aperture.

This phase aberration, although it blurs each individual exposed image, does not
affect the spatial autocorrelation function. A way of circumventing this blurring effect
is to first measure an accurate estimate of the spatial autocorrelation function. This
can be done via Labeyrie interferometry (4]. In this procedure an interferometer is
used to image the spatial autocorrelation function over a small time period. This
estimate will be very noisy because of the short exposure time. The signal-to-noise
ratio however can be increased by averaging several short exposures. Thus a diffraction
limited autocorrelation function can be measured which is not affected by atmospheric
blurring. It is clear that a reliable method for extracting the image of the astronomical
object from such interferometer data would in effect greatly increase the resolution
capabilities of earth-based telescopes.

A possible application of phase retrieval to electron microscopy lies in the possibility
of indirect phase measurement from magnitude measurement [5]. Photographic film
can only record the intensity of the field impinging on it. However, the phase of the
field provides important information on the object being viewed. For example, thin

objects may be considered as modulating the phase of the electron wave while not
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affecting the magnitude. The actuai phase delay introduced depends on the thickness
and composition of the specimen. -Retrieving the phase deiays from the recorded field
intensity would yield an indirect way of measuring the specimen properties.

X-ray crystallography is a third realm where reconstruction from Fourier transform
magnitude may prove useful [6]. Physical arguments show that the angles at which the
x-rays are diffracted from a crystal specimen and the intensity of the diffracted wave
at each angle are related to the Fourier transform magnitude of the electron density of
the crystal under study. An important part of crystallography is the task of deducing
the arrangement of atoms in the crystal from knowledge of such diffraction data.

The importance of the phase retrieval problem has led several researchers to propose
algorithms for reconstruction from Fourier transform magnitude. However, previously
presented algorithms fall into either of two categories; they are heuristic algorithms
which often do not converge to the true reconstruction, or they are computationally
too expensive for even moderate size signals. The purpose of this thesis is to present
a new algorithm for reconstruction of multidimensional discrete signals from Fourier
transform magnitude which is a closed form solution to the problem and which has
been used with success in reconstructing signals of moderate size.

The thesis is divided into eight chapters; Chapter 2 develops an appropriate nota-
tion, reviews basic properties of signals and introduces some mathematical concepts.
Chapter 3 is concerned with the review of previous results in reconstruction of both
one- and two-dimensional signals from the Fourier transform magnitude. The formu-
lation of the phase retrieval probiem as a bivariate polynomial factorization problem

is given in Chapter 4. Previous algorithms for factoring polynomiais in two variables
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and their connection and possible application to the phase retrieval problem are also
discussed. Based on this framework, a new algorithm for factoring large polynomials
in two variables is developed in Chapter 5. This leads to a new closed form algorithm
for solving the phase retrieval problem. Examples of the application of the new phase
retrieval algorithm is the subject of Chapter 6. Chapter 7 discusses the application of
the ideas developed in this thesis to the areas of general bivariate polynomial factor-
ization and filter stability testing. A summary of the work presented and suggestions

for future research is the subject of Chapter 8.
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Chapter 2

Notation and Basic Properties

In this cl;apter we review some concepts from digital signal processing and polyno-
mials in one or several variables. The purpose of this review is primarily to develop a
consistent notation and provide a base for our later development. The interested reader
may consult (7| for a more detailed discussion of the signal processing topics described

here. A development of the properties of polynomials reviewed here is contained in [8].

2.1 Omne- and Two-Dimensional Signals

A one-dimensional discrete signal z{n| or a two-dimensional discrete signal z{m, n|
is a real or complex function of a single integer index n or two integer indices m and n
respectively. The support of z{n] is the set (or sometimes a superset) of all indices n
such that z{n| is non-zero. The support of z{m, n| is also defined as the set of all index
pairs such that z{m, n| is non-zero.

In our discussion we will find special cases of support to be especially useful. A
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signal, either one- or two-dimensional, is said to be of finite extent if its support is
bounded; in one dimension, this means that there is an index pair, (Rmin, Nmea) sSuch
that z{n] = 0 for n > Npes 30d 7 < Npin. Similarly in two dimensions a signal is of finite
extent if there is an index quadruple (Mmeas Mmin) Bmazs Mmin) Such that z{m,n} =0

whenever any of the four conditions below hold:
m > Mmazy M < Mmingy B> Rmazy N < Nmin (2-1)

Pictorially, this means that the non-zero values of z{m, n| can be enclosed in a box,

Figure 2.1.

N maz B | @

Mmin Mmaz

Figure 2.1: A two-dimensional signal with support (Mmin, Mmas] X [Nmin, Nmaz)-

We will denote a region of support consisting of all indices a < n < & as [a, b].
In two dimensions a support comprising all index pairs (m, n) satisfying a < n < b,

¢ < m < d will be denoted by (g, b] x [c,d]. We will abbreviate [a, | x {a, b] by [a, b]2.
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Associated with any signal z|n| is a Laurent series called its z-transform,

X(z) =) z[njz™ (2.2)

where z is 2 complex number. The set of all z where the summation converges is called
the region of convergence (ROC) of X(z). In this fhesis, we will be dealing primarily
with signals of finite extent, in which case the ROC includes all of the complex z-plane
with the possible exclusion of the origin or infinity. Evaluating the z-transform in (2.2)

on the unit circle |z| = 1 yields the Fourier transform,

X(ef®) =3 z{nle=in (2.3)

Even if z{n] is real, its Fourier transform may be complex-valued, and can thus be

represented in terms of its real and imaginary components,
X(c"’) = Xf(ej") + J.X.'(cj") (2.4)

or in polar form

X(ef) = | X(e/7)]er®) (2.5)

Two-dimensional discrete signals also have a z-transform which is a complex-valued

function of two complex numbers w and z,

X(w,z) =) Y z{m,nju™z"" (2.6)

The definition of an ROC also applies to two-dimensional z-transforms. Whenever the

ROC includes the bicircle (w| = 1, {z| = 1, the Fourier transform of z{m, n] is defined:

X(e*,e") =33 z{m, nje ivmeion (2.7)
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An important signal which is generated from z{n] is its autocorrelation function,

defined via the summation below,

rin] = Y z{l|z*{l + n] (2.8)

1

It is straightforward to show that if z{n] is a finite extent signal of support (a, b] then

r(n] has support [—(b — a), (b — a)]. Note that the autocorrelation function is invariant

to multiplication of z{n| by a constant of unit magnitude or to a translation of z{n|.
From the convolution theorem (7], the following relationship is derived between

X(2) and the z-transform of r{n|, R(2),
R(z) = X(2)X"(<2) (2.9)

When evaluated on the unit circle, the above equation collapses to a relationship be-

tween the Fourier transforms of z{n| and r{n|,
R(e") = | X(e”)? (2.10)

From (2.10) one can make an important observation that if two signais have the same
autocorrelation function, they must have the same Fourier transform magnitude, and
vice versa.

The autocorrelation function of z{m, n| is similarly defined by

rim,n] = ZZ [k, l|z* [k + m,l + nj (2.11)

The support of r{m, nj is given by [—(b — @), (b = a)] x {—(d — ¢}, (d = ¢)] for z{m, 1]

with support [a, ] x [c, d].
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The convolution theorem also applies to the two-dimensional case; the z-transform

of rim, n|, R(w, z), is given by
R(w,2) = X(w,2) X" (==, =) (2.12)
w, z2,= b UJ‘, z* .
On the unit bicircle, (2.12) becomes
R(e”, &%) = | X(&%, &°))? (2.13)

Thus we see that as in the one-dimensional case, if the Fourier transform magnitude of

a signal is known then its autocorrelation function is known also and vice versa.

2.2 Polynomials in One and Two Variables

In the subsequent discussion, we will be dealing primarily with signals of finite ex-
tent. In this case, the corresponding z-transforms are essentially polynomials. There-
fore, it is important to understand some properties of polynomials which will be used
later on.

A polynomial in one variable z is a function of the form

N
p(2) = 3_ pn2” (2.14)

n=0

where the p, are complex numbers and N is finite. The degree of a polynomial in one
variable (or one-dimensional polynomials) is the largest power to which the indeter-
minate variable is raised. The degree of a polynomial p(z) will be denoted by deg(p).
Thus the polynomial p(z) in (2.14) above has degree deg(p) = N.

As a result of the Fundamental Theorem of Algebra (8], all one dimensional poly-

nomials of degree N can always be expressed as a product of N polynomials of degree
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1 and a constant,

N
p(z) = px [[ (2 = 22) (2.15)

n=1{

This product representation is unique up to a permutation of the product terms. Since
p(2n) = 0 for all n, 2, is called a zero of p(z). We note that z, will generally be complex,
even if the p, set is real.

A polynomial p(z) with deg(p) > 0 is called reducible if it can be expressed as the

product of two polynomials p,(z), p2(z) with deg(p,) > 0 and deg(p,) > 0, i.e.,

p(z) = pi(2z)p2(2) (2.16)

If no such decomposition is possible, then p(z) is called irreducible. From the decompo-
sition presented in (2.15), we see that the only irreducible polynomials in one variable
are polynomials of degree 1 1. We will see, however, that the situation is quite different

for polynomials in two (or more) variables.

Associated with any polynomial is a “mirror” polynomial consisting of coefficients
in reversed order and conjugated. For example, for the polynomial p(z) in (2.14), the

mirror polynomial p(z) is defined by

N
p(2) = Y Pi-nZ” (2.17)
n=0

There is a very simple relationship between the zeros of p(z) and p(z); namely, if 2, is

a zero of p(z), then z;~! is a zero of p(z).

!Strictly speaking, irreducibility is defined with respect to a specific field. Whether a polynomial is
irreducible or not may depend on the field of interest. However, in our discussion we will only be dealing
with polynomials over the fleld of complex numbers.
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One can also study polynomials in two variables, also called two-dimensional poly-

nomials or bivariate polynomials. In this case there are two variables w, z,

M N
p(w,z2) =3 Y pmaw™z" (2.18)

m=0 n=0
where again pm. are allowed to be complex numbers. The degree in w, deg,(p), of
p(w, z) is the highest order to which the indeterminate w is raised. In the example
above, deg,.(p) = M. Similarly, the degree in z of p(w, 2z), deg.(p), is N. The degree of
the polynomial p(w, z) deg(p), is defined by the pair of integers (deg,(p), deg.(p)); in
this case, deg(p) = (M, N}. We will also define the total degree of p(w, z), totdeg(p),
as the degree of the univariate polynomial p(w,w). We note that in some areas of
mathematics, e.g., algebraic geometry, the total degree is considered the degree of
p(w, z).

A decomposition of an arbitrary bivariate polynomial into a product of polynomials
of a lower degree is not always possiblg. This is because, unlike the case for one-
dimensional polynomials, there are irreducible polynomials in two variables for any
degree, except of course polynomials which are of degree 0 in one of the variables.

Ezample: The polynomial of degrée (M. N) below is easily checked to be irreducible for
any N >0and M >0 [9],

p(w.z) =po+prw+---+pwl + 2V (2.19)

If a product decomposition does exist, then it is essentially unique as expressed in

the following theorem (10|,

Theorem 2.1 Every polynomial f(w,z) is ezpressible as the product

f=PP- -P (2.20)
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