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Preface

The theory of partial differential equations has become one of the most important
fields of study in mathematical analysis, mainly due to the frequent occurrence of
partial differential equations in many branches of physics, engineering, and other
sciences. The study of these equations has been intensive and extensive; as a result,
. several books on the subject have been published. Despite the number of excellent
textbooks available, this book has been written to present an approach based mainly
on the mathematical problems and their related solutions, and also to formulate a
course appropriate for all students of the mathematical sciences. The primary
concern, therefore, is not with the general theory, but to provide students with the
fundamental concepts, the underlying principles, and the techniques and methods
of solution of partial differential equatlons

An attempt has been made to present a clear and concise exposition of the
mathematics used in analyzing a variety of problems. With this in mind, the
chapters are carefully arranged to enablé students to view the material to be studied
in an orderly perspective. Theorems, for example, those in the chapters on Fourier
series and eigenvalue problems, are explicitly mentioned whenever possible to avoid
confusion with their use in the development of principles of partial differential
equations. A wide range of problems in. mathematical physics, with various
boundary conditions, has been included to improve student understanding.

Ih.is book is in part based on lectures given at Manhattan College. It is used by
dvanced undergraduate or beginning graduate students in applied mathematics,
physics, engineering, and other sciences. The prerequisite for its study is a standard
calculus sequence with elementary ordinary differential equations.

The first chapter is concerned mainly with an introduction to partial differential
equations. The second chapter deals with mathematical models corresponding to
physical events that yield the three basic types of partial differential equations. The
third chapter constitutes a full account of the classification of second order
equations with two independent variables, and in addition, illustrates the determi-
nation of the general solution for a class of relatively simple equations.

After attaining some knowledge of the characteristics of partial differential equa-
tions, the student may continug¢ on to the Cauchy problem, the Hadamard example
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and the Riemann method for initial value problems, as presented in the fourth
chapter. The fifth chapter contains a brief but thorough treatment of Fourier senes,
essential for the further study of partial differential equations.

Separation of variables is one of the simplest and most widely used method of

solving partial differential equations. Its basic concept and the separability condi-

tions necessary for its application are described in the sixth chapter, followed by
" some well-known problems of mathematical physics with a detailed analysis of eath

problem. In the seventh chapter, eigenvalue problems are treated in depth, building

on their introduction in the preceding chapter. In addition, Green’s function and its
_apphcahon to eigenvalue problems are developed briefly.

Boundary value problems and the maximum principle are presented in the eighth
chapter whereas more involved higher dimensional problems and the eigenfunction
method are treated in the ninth chapter. The tenth chapter deals with the basic
concepts and the construction of the Green’s function and its application to
boundary value problems. In the final chapter the fundamental properties and the
techniques of Fourier and Laplace transforms are mtroduced

The chapters on mathematical models, Fourier series and eigenvalue problems are
self-contained, hence these chapters can ‘be omitted for those students who have
prior knowledge of the subjects. The exercises are an integral part of the text and
range from simple to more difficult problems. Answers to most exercises. are given
at the end of the book. For students wishing further insight into the subject matter,
detailed references are listed in the Bibliography. -

The author wishes to express sincere appreciation to his colleagues and the students
who used the mimeographed edition of this book, and to Mr. John Adamczak for
. his kind assistance in the preparation of the answers. The author also wishes to
thank Professor-Arthur Schlissel for reading the first part of the original manuscript -
and for offering many helpful comments, and Professor Donald Gelman for reading
the entire manuscript and for rendering most valuable comments and suggestions.
The author also extends his profound gratitude to the reviewers for their construc-
tive criticisms and suggestions and to the staff of American Elsevier for their kind
help and cooperation. Finally, he wishes to express his heartfelt thanks to his wife
Aye for her patience, understandmg and encouragement necessary for completion
of this book.

Tyn Mymt-U
- Harrison, New York
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CHAPTER 1
' ‘Intr‘oducti.on

1.1. Basic Concepts and Definitions

A differential equation that contains, in addition to the dependent variable and
the independent variables, one or more partial derivatives of the dependent variable
‘is called a partial differential equation. In general, it may be written in the form

‘ SOy, oot Uy Uy, . ) =0 (BB

involving several independent variables x, y, ..., an unknown function u of these
variables and the partial derivatives! u,, Uy, . .5 Ugy, Uyy, . . . Of the function. Here
Eq. (1.1.1) is considered in a suitable domain D of the n-dimensional space R” in
the independent variables x, y, . ... We seek functions u = wu(x, y, . . . ) which satisfy
Eq. (1.1.1) identically in D. Such functions, if they exist, are called solutions of Eq.
(1.1.1). From these many possible solutions we attempt to select a particular one by
introducing suitable additional conditions.

For instancé,
Uy, + Uy =y
Ugx + 20Uy, + 3xu,, =4 sin x
) + () = 1

Upy — Uy, =0

(112

are partial differential equations. The functions

u(x,y) = (x + y)°
u(x,y) = sin(x - y)

are solutions of the last equation of (1.1.2) as can easily be verified.
The order of a partial differential equation is the order of the hi;hcst-ordered
partial derivative appearing in the equation. For example, ‘ '

Uy + 2xUy, + U, = )

! Subacripts on dependent variables denote differentiations, ¢.g.

u, = (u/dx) wuy, = (3*u/3ydx)

1



2 PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS

is a second-order partial differential equation, and
i)xxy + xuy, + 8u =Ty

is a third-order partial differential equation. :

A partial differential equation is said to be linear if it is linear in the unknown
function and all its derivatives with coefficients depending only on the independent
variables; it is said to be quasilinear if it is linear in the highest-ordered derivative .
of the unknown function. For example, the equation "

Pyy + 2xpu,, +u =1
is a second-order linear partial differential equation whereas
Uy Uy, + XUy, = §in y

is a second order quasilinear partial differential equation. The equation which is not
linear is called a nonlinear equation.

In this book we shall be primarily concerned with linear second-order partnl
differential equations frequently arising in problems of mathematical physics. The
most general second-order linear partial differential equation in » independent
variables has the form

li‘ Aguys + 2 Bty + Fum G (1.13)
= i=1 :

where we assume without loss of generality that 4; = 4,. We also assume that
B;, F, and G are functions of the n mdependent vanablu xq.

If G is identically zero, the equation is said to be homogeneous; otherwxse it is
nonhomogeneous.

The general solution of an ordinary differential equation of nth order is a
family of functions depending on n independent arbitrary constants. In the case of
partial differential equations the general solution depends on arbitrary functions .
rather than arbitrary constants. To illustrate this, we consider the second-order
equation

Uy, =0
If we integrate this equation with respect to y, holding x fixed, we obtaih
Uy (x,9) = f(x)
A second integration, this time with respect to x while y is held fixed, yields
u(x,y) = g(x) + h(y)

where g(x) and h(y) are arbitrary functions. '
Suppose u is a function of tpree variables, x, y, and z. Then for the equation

uyy-Z



‘Basic Concepts and Definitions 3
“one finds the general solution

Uy, 1) =+ (D) + 8(x,2)

where f and g are arbitrary functions of two variables x and z. :
We recall that in the case of ordinary differential equatfons, the first task is to
ascertain a general solution, and then the particular solution is determined by
finding the values of arbitrary constants from the prescribed conditions. But, for
partial differential equations, selecting a particular solution satisfying the supple-
mentary conditions from the general solution of a partial differential equation may
be as difficult as, or even .more difficult than, the problem of finding the general
solution itself. This is so because the general solution of a partial differential
equation involves arbitrary functions; the specialization of such a solution to the
particular form which satisfies supplementary conditions requires the determination
of these arbitrary functions, rather than merely the determination of constants.
- For linear homogenous ordinary differential equations of order n a linear
.combination of n linearly independent solutions is a solution. Unfortunately, this is
not true, in general, in the case of partial differential equations. This is due to the
- fact that the solution space of every homogenous linear partial differential gquation
is infinite dimensional. For example, the partial differential equation

) | Uy — u, =0 (1.1.4
can be transformed into the equation |

2u; =0
by the transformation of variables
§=x+y
n=x-y
The _épneral solution is ' '
u(x,y) = f(x + y)

where f(x + y) is an arbitrary function and is everywhere differentiable. From this
it follows that each of the functions '

(x+yy
sin n(x + y)
cos n(x + y)
exp n(x + y)

is a solution of Eq. (1.1.4), and it is evident that these functions are 1ihearly
independent. The fact, that a simple equation such as (1.1.4) yields infinitely many

forn=1,2,3,...
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N .

solutions, is an indication of an added difficulty which must be overcome in the

study of partial differential equations. Thus, we generally prefer to determine

directly the particular solution satisfying prescribed supplementary conditions.

1.2. Linear Operators |

This section will be devoted to a brief discussion of linear operators whxch are
often encountered in the theory of partial differential equations.

An operator is a mathematical rule which when applied to a function produces
another function. For example, in the expressions

Lu = ax+aa;5;+§

Mu-g;'z‘ » ngz—y;‘

L %+% ;’;
PY:

M= ax2 xza;

are called differential operators. There are other types of operators, such as

b
Plul = [ u(x,)F@r,y)dr  a, b are constants
a

Qlu] = u(x,c) + u,(x,c)  cis a constant

The operator P is an integral operator and the operator Q is an operator which
transforms the function ¥ of two variables x and y into the function Qfu] of one
variable x.

Two differential operators are said to be equal if, and only if, the same result
is produced when each operates upon the function , that is A = B if, and only if,

Alu] = Blu] a2

for thc function ». The function u must be sufficiently differentiable.
The sum of two differential operators A and B is defined as

(4 + Bu = A[u] + Blu] - (122)

for the function wu. .

The product of two dlfferenual operators A and B is the operator which
produces the same result as is obtained by the successive opcranons of the operators
A and B on the Tunction u, that is,

ABl] = ABWD 23



Basic Concepts and Deﬁnitions . S
Differential operators satisfy the following:

(1) The commutative law of addition: '
A+B=B+4 (1.2.4)
(2) The associative law of addition: ‘ ‘
A+B)+C=A+B+C) (1.2.5)
(3) The associative law of multiplication:
| (4B)C = A(BC) (1.2.6)
(4) The distributive law of mulﬁpﬁcaﬁon with respect to addition:
| A(B + C) = AB + AC (127
(5) The commutative law of multiplication:
AB=BA : (1.2.8)

holds only for differential operators with constant coefficients.

EXAMPLE 2.1. Let A = 32/3x2 + x3/3y and B = 32/3)% — yd/dy
Blu) = 32u/3y* — ydu/dy

ABlu] = (ax2 a)(gyg %;‘7)

*u Pu a_s__xyay . du
8x28y2 axZay ay3 32 ay_

(9 __98)(3 ]

BA[u]—(yz yay)(ax;‘-l-xu)
3*u 33 Pu _ _ Ru
8y23x2+ » Theld TR

thus AB{u] 5= BA[u] for x % 0.
We define linear operators having the followmg properties:

(1) A constant ¢ may be taken outside the operator::
Licu] = cL[u]

(2) The operator operating on the sum of two functions gives the sum of the
operator operating on the individual functions:

Lju + v] = L{u] + L{v}

49984



6 PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS - .

Properties (1) and (2) may be combined to express
Lais + bv] = aLfu] + bL{v] " (129)

where a and b are constants.

Now let us consider a linear second-order partial differential equation. In the -
case of two independent variables, such an equation takes the form

A(x’y)uxx' + B(X9Y)“xy + C(x’y)uyy + D(x,)')“x
+ E(x,y)u, + F(x,y)u = G(x,y)

where the coefficients A4, B, C, D, E, F ‘are functions of variables x and y, and
G(x,y) is the nonhomogenous term.
If we take the linear differential operator L to be

(1.2.10)

92 6 a2 d ) ‘
L=Az5+Bs o 5+t Caa+tDag +Eg+F
Fy% R ox dy .

then the differential equation (l.2.10) may be written in the form
| Liul=G . 211
Very often the square bracket is omitted and one simply writes 4

Lu=G

1.3. Mathematical Problems

A problem consists of finding an unknown function of a partial differential
equation satisfying appropriate supplementary conditions. These conditions may be
initial and/or boundary conditions. For example ‘ :

PDE u—uyu=0 - 0<x<I >0

I1.C. u(x,0) = sin x 0.< x< !
B.C. u(0,) =0 t3»0
B.C. u(l,r) = : 150

is a problem which consists of a partial differential equanon and three supplemen-

. tary conditions. The equation describes the heat conduction in a rod of length /. The

last two conditions are called the boundary conditions which describe the function at '

_ two prescribed boundary points. The first condition is known as the initial condition
- which prescribes the unknown function w(x, ) throughout the given region at some

initial time ¢, in this case 7 = 0. This problem is known as the initial-boundary value
problem. Mathematically speaking, the time and the space coordinates are regarded
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as some independent variables. In this respect, the initial condition is merely a point
prescribed on the r-axis and the boundary conditions are prescribed, in this case, as
two points on the x-axis. Initial conditions are usually prescribed at a certain time
t = 5 or t = 0, but it is not customary to consider the other end point of a given
time interval. '

In many cases, in addition to prescribing the unknown function, other
conditions such as their derivatives are specified on the boundary.

In considering the problem of unbounded domain, the solution can be
determined uniquely by prescribing initial conditions only. The problem is called
the initial value problem.2 The solution of such a problem may be interpreted
physically as the solution unaffected by the boundary conditions at infinity. Later
we shall discuss problems with boundedness conditions on the behavior of solutions
at infinity. ‘ )

A mathematical problem is said to be properly posed if it satisfies the following
requirements: '

(1) Existence: There is at least one solution.
(2) Uniqueness: There is at most one solution.
(3) Stability: The solution depends continuously on the data.

The first requirement is an obvious logical condition, but we must keep in mind
that we cannot simply state that the mathematical problem has a solution just
because the physical problem has a solution. The same can be said about the
uniqueness requirement. The physical problem may have a unique solution but the
mathematical problem may have more than one solution.

The last requirement is a necessary condition. In practice, small errors occur in
the process of measurements. Thus for the mathematical problem to represent a
physical phenomenon a small variation of the given data should lead to at most a
small change in the solution. ’

1.4. Superposition
A linear partial differential equation has the form
Lu=G

We may also express supplementary conditions using the operator notation. For
instance, we may define

[t )mo = M;[u]
(t]xms = Mj[u]

“where the M operators are linear operators representing supplementary conditions.
The inijtial-boundary value problem may thus be written as

2A mathematical definition will be given in Chapter 4 .
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Lul=G
M, [u] = g

(1.4.1)

M,lu} = g,
where the first equation is a linear partial differential equation and the others are

linear initial or boundary conditions. For example, the initial-boundary value
problem .

Uy, — Fu, =Gx,t) 0<x<l >0
u(x,0) = g (x) 0<x<!
u,(x,0) = gy(x) 0<x<K! (1.42)
(0, 7) = g5(1) t>0
u(l,p) = g4(1) . t30
may be written in the form
Liu)= G
My[u] = g,
My[u] = g, - (143)
M;[u] = g3
My[u] = g4

where g; are the prescribed functions and the subscripts on operators are assigned
arbitrarily. ' :
We consider the problem (1.4.1). Let

u=v+w

where v is the particular integral of (1.4.1), that is

Livy)= G
Because of the linearity of the equation, we have
L{u] = L{v) + Liw] = G
so that
Liwl=0

Thus we may state that the solution of a given partial differential equation can be
presented as the sum of a particular solution and a solution of the “associated
homogenous equation.”



