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Author’s preface

This textbook provides a compact treatment of linear differential equations
and linear difference equations using transform techniques. It is written as a
textbook for engineering, science, computer science, and applied mathematics
students in universities and polytechnics. Additionally it will provide a useful
starting point for those who require to study more advanced texts, particularly
in the field of signal analysis. Students on mathematics courses will find in the
book an appreciation of how transform theory is applied in engineering
situations.

The level of presentation is appropriate to second year degree mathematics
students or to readers who are not specialists in mathematics, such as engineers
and scientists, who study continuous and discrete linear systems. Such readers
will require a mathematical background approximately equivalent to first year
university mathematics.

The transform techniques used in the book are developed to encourage
readers to think in terms of transfer functions and block diagrams rather than
equations. An important relationship between the transform variables and
frequency is established, and system stability is considered. Examples are
chosen from the fields of Electrical Engineering, Mechanical Engineering,
Civil Engineering, and Control Engineering. The book is probably unique in
the way it uses frequency domain analysis to underline the similarities between
differential equations and difference equations.

The development of microelectronic technology has given new emphasis to
the analysis and filtering of discrete signals. The chapter on digital filters will be
particularly useful to those whose background has been mainly in continuous
systems.

PART I (Chapters 1-4). After a brief introduction to Fourier series, the
Laplace transform is defined and applied to the solution of linear differential
equations. Block diagram notation and transfer functions are introduced, and
the language of control system analysis is used. Special emphasis is placed on
the frequency response function and its application in the study of steady-state
oscillations. An introduction is given to the concept of analog filtering and to
the use of Bode diagrams. Chapter 4 considers differential equations with
piecewise continuous forcing functions and serves as an introduction to
sampling devices.

PART II (Chapters 5-8). Consideration of sampling devices leads to the
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definition of the z-transform which is then applied to the solution of linear
difference equations. Again transfer functions are defined and block diagram
notation is used. The use of transfer functions allows the similarities between
differential equations and difference equations to be highlighted. In particular
the methods for obtaining a system’s steady-state output from its transfer
function are compared. z-transform techniques are applied to simple sampled-
data systems and to digital systems with reconstructed outputs. In the final
chapter digital filters are introduced and simple design algorithms are
established so that the performance of a given analog filter may be copied.

The “dot” notation, x = dx/d¢, is used throughout the book; other notations
are defined as they occur in the text. All system inputs are taken to be zero for
t <0,

The author is indebted to the many students at Paisiey College who, in
recent years, have been on the receiving end of much of the material contained
in this textbook.

Particular thanks are expressed to Madeleine Stafford for the considerabie
task of typing and correcting the manuscript.

Finally I am grateful to the Series Editor, Professor G. Bell, to the
publishers’ referee, and to the staff of Ellis Horwood Limited for their valuable
assistance and encouragement.

R. M. Johnson

Paisley 1984
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CHAPTER 1

An approach to the Laplace transform

1.1 INTRODUCTION

The Laplace transform is a powerful mathematical tool for problems arising
from the study of continuous systems. The term ‘continuous systems’ is taken
to imply systems which can be modelled by ordinary differential equations, for
example

(i) a control system which positions a missile fin to achieve a certain lateral
acceleration,

(i) a crane where the position of the load is controlled by the application of
hydraulic motors,

(11i) a structure subject to vibration.

The variables in these examples, position, acceleration, pressure, force,
displacement, are continuous variables which can take any value within some
specified range.

In Part 1 of this book we will apply Laplace transforms to linear continuous
systems, that is systems described by linear differential equations. This can be
done by accepting the mathematical definition of a Laplace transform as a
starting point and turning directly to Chapter 2. This first chapter approaches
the idea of a Laplace transform by considering the frequency characteristics of
a function of time, and attempts to show the important relationship between
the Laplace variable and frequency.

1.2 THE FOURIER SERIES OF A PERIODIC FUNCTION

A periodic function f(z) satisfying certain conditions may be expressed as an
infinite series which is a linear combination of sine and cosine functions whose

. . 2 .
frequencies are multiples of the fundamental frequency wg = —g, where L is

the period of f(1). The infinite series is known as the Fourier series expansion
of f(t) and takes the form

1 a0
f(l)=§a0+ Y (a,cosnwgt + b, sin nwgt). (1.1

n=1
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where the constants a, and b, are given by

n/wo
=~J (t) cos nwgt dt. (1.2)
—n/wo
n/wo
— J‘ ) sin nwqt dt. (L.3)
— /g

( ; L)
note that — = —
we 2

Assuming that the Fourier series expansion exists for a given function f(1),
then equations (1.2)and (1.3) follow immediately from the orthogonality of the

. : n
functions {sinnwyt, cos nwyt} over the interval [—— — |. That is,
Wo Wo

when n # m, m and n integers

n/wg
f cos nwot cosmawptdt = 0
~n/wg

/e
f sin nwet sinmwytdt = 0,

~T/wo

and for all integers m, n

n/wo

f sin nwyt cos nwgy tdt = 0.
—njwg

Sufficient conditions for the existence of the series (1.1) are that the function

f(t) is bounded and has a finite number of discontinuities and a finite number

. . . nomn . .
of maxima and minima in the interval [— —, _} If t = ¢, is a point where
Wo Wy

S(v) is continuous then the series converges to f(t,); if t = t, is a point where
J(¢) is discontinuous then the series converges to {6, T)+1(t,7)}, where
1;—e<t,” <t,<t," <ty+e for arbitrarily small &. For a more detailed
treatment of Fourier series see Kreyszig (1979).

Example 1.1
Obtain the Fourier series expansion of the function

— <t <0

f(l)~{1 0< St +2m) = f(0).

The function is shown in Fig. 1.1.

The period of the function is L = 2x, therefore w, = 1.
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A ft)
- 1 ; ) HER
——— St
—-3r —2r -7 m 2r 3w 4n 57
Fig. 1.1

Equations (1.2) and (1.3) give

n

"ty

ffn

dt

0

fr

f(®)cosntdt for n=1,23,...,
fn

cos nt dt

J 0

O Q=

fn

f@®sinntdt for n=1,2,3,...,

-n

| =

fn

sin nt dt

1

= I,

) 2/mn; when n is odd
o, when n is even.

Substituting these results into equation (1.1) gives the required series,

sin 3¢ +sin 5t N
3 5 S

f()y= 0.5+%{sint +

Note that the above series converges to 1 for 0 < t < 7, converges to 0 for
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—m <t <0, and converges (clearly) to 0.5 when ¢ = 0. For example, putting
YA

125,

) o« (__l)r —7[
that is, rgo @D "4

Example 1.2
The function f(f) = ¢ is defined in the interval 0 < 1 < I. Obtain an infinite
series expansion of f(t) of the form

nm

L
!

t, 0<1t

VAN

1 e e}
f(t) = 390 + Y a,cos
n=1
Hence show that
1 n

,go Qr+1)F " 8"

We consider the even function f (1) defined as follows

fE(I) = {

L 0<gr<l!
~—1, =1t <0’

Je(t+20) = £ (0).

The function f; (1), shown in Fig. 1.2(a), is a periodic function of period 2! and
coincides with the given function f(¢)in the interval 0 < ¢ </. Since it isan even
function, f; (1) will have a Fourier series expansion which contains only cosine
terms. That 1s,

1 d -
fg(l)=§ao+ Y a,cosnwyt, w, =7
n=1

Therefore the function f(¢) will be represented by this series in the interval
0 << (fg(1) is continuous for all )
Equation (1.2) gives

1 !
a0=7J Je(0)de
-1
2 1

T
=1

J tdt, since f;(t) is even,
0
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! nm

a,,:f f(t)cosTtdt, n=1223,...
—1

2 1
=j lcosnTntdt

0

2(0rF . 2
=7 Esmnn-%nT{Z(cosnn—]) .
0O,n=24.6,...
Therefore a, = { —4l
¢ n—zn—z,n=1,3,5,.‘.

{4l id 1 3n 1 S5n
and f(t)=§—P cosTt+3—zcosTt+5—zcosTt+ Cop.

Setting t = 0 gives

] 1 7'[2
that i , —_— =
ares ,;0 Qr+ 17 8

Note that if we require a sine series for f(1) = 1,0 < t < [, then it is necessary to
consider the periodic odd function,

L=t It <, fi(t+2D) =f ().

The Fourier series expansion of f_ (1) contains only sine terms, that is, a, = 0
forn=20,1,2,3,.... (See Fig. 1.2(b) and Problem 3.)

Problems
(1) Obtain the Fourier series expansion of the function
T+t —n<t<0
1) = 2m) = f(1).
s {n_t, 0 < on S =f0)

(2) The output of a half-wave rectifier is given by

2 T
Esinvnt,0<t<—

2
Jo = T SE+T) = (0.
2
4z 87
E E . 2n 2 an 8n
Showthatf(z)=f+;sin_ﬁl__E COS ot cos 1
2T o= + + ...

1.3 35
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Af(t)

/[ -

(a)

A fo(t)

(b)

Fig. 1.2 (a) Even extension of f(t), (b) Odd extension of f ().

(3) The function f(t) = t is defined on the interval 0 < ¢ < I. Obtain an infinite
series expansion of f(¢) in the form

fy =3 b, sinnTnt.
n=1
(4) By consideration of the Fourier series for f(t) = 12, — 1 < t < 7, show that

2 11 1
(1)”—_1+++ ot

49
n? 1 1 1
(ii) E=1—2+§—R+

(5) Obtain the Fourier series for (1) = e =4l a > 0, — L <t < L and deduce
that

d 7Y L (1=t
S GRS L el
,Z‘l {a *er-n da|1+e-at
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Answers to problems

4 1 1
(H T‘,Jr, cos!t + —cos 3t + —cos 5t + }
2 =m| 9

25
21 1.2 1.3
(3) n{sinz;t—»zsmlnz+35m7nz— } 0t <l

1 2a & n?a?\"!  nn
- _a—alL 2 —(—1Yte—alL 2 t.
(5 aL(] ¢ )+L,l=1(1 (=1)e )<a + L? ) COSL

1.3 COMPLEX FORM OF FOURIER SERIES

The sequence of numbers {a,, a,,4a,, ..., by, by, ...} is an alternative way
of defining the function f() since given these numbers we can reconstruct
the function using the Fourier series, equation (1.1). Writing the series as

f@) = %ao + i r, cos (nwgl + ¢,,)

where r, = \/(a,, +b,%),n=1,23, ... each number r, provides a measure
of the contribution to the periodic function f(t) from the frequency nw,. This
information can be presented graphically in the form of a Discrete amplitude
spectrum, see Fig. 1.3. In particular, the discrete amplitude spectrum for
Example 1.1 is shown in Fig. 14.

An alternative, and more usual, representation of the discrete amplitude
spectrum is related to the complex form of the Fourier series expansion.

2 rs
ra
I's
I re
1 t t 1 T > W
wy 2wy 3w, 4w, 5w, 6w,

Fig. 1.3
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A

0.5 -<L-

-
N -9
w

Fig. 1.4
Making the substitutions

1
COS Nyt = 2<exp (jnwet)+exp( —jnwot)>’r

. 1 . .
sinnwyt = Z (exp (Jnwyt) —exp( —anot)>
where j2 = —1 and exp(u) denotes e", equation (1.1) becomes
1 1 & . . . .
f(t) = iao + E Z {(an “an)eXp (J"wol) + (an +Jb,,)exp(—jna)ol)}. (14)
n=1

If we define

Co =34do

| —

¢, =

(an —jbn)a n= 1, 2, 3, e

N —

1
C—nzi(an_*_jbn)s n=1,2,3,-~-9

then equation (1.4) can be written in the complex form

SO =3 c,exp(jnwot). (1.5)
where
/wg
c, =20 f() exp (— jnwgt) d. (1.6)
2n —njwy

- For convenience in printing the notation exp( ) is frequently used for ' .



