APPLICATIONS OF LOW ENERGY X- AND GAMMA RAYS Edited by CHARLES A. ZIEGLER # Applications of Low Energy X- and Gamma Rays Edited by Charles A. Ziegler GORDON AND BREACH SCIENCE PUBLISHERS New York Paris London Copyright © 1971 by Gordon and Breach, Science Publishers, Inc. 440 Park Avenue South New York, N.Y. 10016 Editorial office for the United Kingdom Gordon and Breach, Science Publishers Ltd. 12 Bloomsbury Way London W.C.1 Editorial office for France Gordon & Breach 7-9 rue Emile Dubois Paris 14^e Papers selected from the Third Symposium on Low Energy X- and Gamma Ray Sources and Applications sponsored by the following organizations and their representatives U.S. ATOMIC ENERGY COMMISSION James W. Hitch Division of Isotopes Development BOSTON COLLEGE James L. Carovillano Chairman Department of Physics PANAMETRICS Subsidiary of Esterline Corp. Charles A. Ziegler Library of Congress catalog card number 78-141897. ISBN 0 677 14640 X. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publishers. Printed in Great Britain by A. Wheaton & Co., Exeter. ### Preface THE PAPERS IN THIS VOLUME were presented at the third in a series of symposia on low energy X- and gamma-ray sources and applications held at Boston College, Chestnut Hill, Massachusetts. The symposium, which was sponsored jointly by Boston College, Panametrics, Inc., and the Atomic Energy Commission, was international in character, and broad in scope in the sense that fundamental studies were combined with applications in such diverse fields as geology and medicine as well as a wide variety of industrial applications. The purpose of the third symposium, as was that of the first and second, was to bring together scientists engaged in the development of X- and gamma-ray technology and to provide an opportunity for an interchange of ideas. This should assist in meeting requirements placed upon us by our ever-expanding society in the fields of medicine, en- vironmental pollution analysis, and industrial quality control. . The general theme of the symposium was biased toward radioiso-tope-excited X-ray fluorescence analysis (XRF) and the various techniques employed to improve upon the technology. Energy determination using balanced filters and scintillation counters or semiconductor and proportional counters were treated in considerable depth. Other technologies covered were Mössbauer effect spectrometry and electron spectroscopy. It is expected that interest in each of these areas will continue to grow as the spectral capabilities of each are better understood. It is interesting to note that radioisotope-excited XRF first became practical back in the forties after the Manhattan District Project came into being although the possibility of radioisotope X-ray excitation was demonstrated by Chadwick's experiments in 1912 when he observed that alpha particles could be used to excite fluorescent X-rays. But it has been only within the past 10 years that XRF has begun to show signs of wide acceptance by industry and by scientists working in a variety of disciplines. Mössbauer effect spectroscopy based on recoilless resonant absorption of gamma rays has, in the 12 years since its discovery by R. L. Mössbauer, likewise made significant advances into the fields of chemistry and metallurgical research. This relatively new analytical technique and the still newer developments of electron spectroscopy, each in its own right, appear to offer many potential benefits that are yet to be appreciated fully. The sponsorship of government programs with valuable input from industrial and other organizations will, no doubt, bring about a better understanding of these benefits. JAMES W. HITCH Division of Isotopes Development U.S Atomic Energy Commission ### Contents | Preface | \mathbf{v} | |---|-----------------------------------| | INDUSTRIAL APPLICATIONS | | | Progress in Industrial Application of Low Energy Radioisotope X-Ray Techniques, J. R. Rhodes | 3 | | Applications of a Technique for Rapid Alloy Sorting with a Radioisotope Excited X-Ray Analyzer, B. Sellers, J. M. Brinkerhoff, and F. A. Hanser | 19 | | PPM Measurements of Iron-in-Oil by Radioactive X-Ray Fluorescence Analysis, R. J. Gehrke, L. L. Packer, B. A. Woody, and W. A. Bruton | 33 | | Portable, Laboratory and On-Line Measurements of Coating Thickness using Radioisotope X-Ray Fluorescence Techniques, J. F. Cameron | 49 | | A Radioisotope X-Ray Fluorescence Analyzer for On-Line Process Control, T. Tanemura and H. Suita | 69 | | On-Line Continuous Type Check for Welded Tubular Products, A. D. Foley, J. P. Masterson, and N. M. Rice. | 81 | | Industrial Applications of Low Energy Gamma Emitting Isotopes, Y. M. Chen and B. B. Cahill | 91 | | A Pulsed Low Energy X-Ray Gauge, B. Y. Cho, O. L. Utt, and R. J. Pfeifer | 105 | | Cadmium-109 X-Ray Absorption Technique for the Measurement of Sulfur Dioxide in Stack Gases, R. J. Pfeifer, B. Y. Cho, | | | and O. L. Utt | 115123 | | GEOLOGICAL APPLICATIONS | | | X-Ray Fluorescence Measurement of Light Elements in Ores, F. A. Hanser, B. Sellers, and J. M. Brinkerhoff. | 137 | | X-Ray Intensity Measurements from Ores Using Semiconductor Detectors and Radioisotopic Excitation, P. G. Burkhalter | 147 | | Iron, J. M. Brinkerhoff, B. Sellers, and F. A. Hanser. | |---| | Techniques for Enhancing Sensitivity of X-Ray Fluorescence Analysis of Rocks, A. B. Tanner and J. M. Brinkerhoff | | The Application of Mössbauer Spectrometry to Lunar and Terrestrial Rock Samples, C. L. Herzenberg, D. L. Riley, and | | R. B. Moler | | Lunar and Planetary Surfaces, J. I. Trombka, I. Adler, R. Schmadebeck, and F. Sentfle, | | Radiogenic Heat Measurements in Rock by High Resolution
Lithium-Drifted Germanium Spectroscopy, I. J. Russell | | BIOMEDICAL APPLICATIONS | | In Vivo Flow Studies by Means of Excited X-Ray Characteristic Radiation, M. M. Ter-Pogossian | | X-Ray Absorption in Bone and Muscle, W. J. Veigele and E. M. Henry | | Mössbauer Spectroscopy of the Undecapeptide of Cytochrome c,
L. May, R. Nassif, and M. Sellers | | The Analysis of Biological Materials with the Electron Microprobe, W. L. Robison | | The Potential Use of ¹⁰⁹ Cd for Dual Absorption Measurements of Soft Tissue, W. G. Schmonsees and L. E. Preuss | | In-Situ Determination of Lead on Painted Surfaces for the Prevention of Childhood Lead Poisoning, G. R. Laurer, T. J. Kneip, R. E. Albert, and F. S. Kent | | X- AND GAMMA RAY TECHNIQUES | | A New Method for X-Ray Energy Selection Using a Scintillation Counter and Balanced Filters, J. R. Rhodes, I. L. Morgan, and T. Furuta | | Application of a Si(Li) Spectrometer to X-Ray Emission Analysis of Thin Specimens, J. R. Rhodes, A. Pradzynski, R. D. Sieberg, and T. Furuta. | | Large Area Silicon X-Ray Detectors, R. S. Frankel and D. W. Aitkin | | Contents | 1.2 | |--|-----| | Recent Developments in Low Energy Photon Sources, K. H. Ansell and E. G. Hall. | 35 | | Design and Use of Low-energy Gamma and X-Ray Sources, R. S. Pressly | 373 | | A Curved Position-Sensitive Detector for X-Rays, R. A. Semmler | 399 | | An Energy-Flux Meter for 1 to 10 Å X-Rays, J. H. McCrary, P. B. Lyons, and J. A. Baran | 409 | | Chemical Analysis from Photoelectron Spectroscopy, J. K. Wood | 41 | | Particle Size Heterogeneity Phenomena in X-Ray Analysis, P. F. Berry | 429 | | The Measurement of Density Profiles in Cylinders of Air Using Soft X-Ray Transport, R. P. Couch and E. C. Battle | 45 | | Contributing Authors | 463 | | Session Chairmen and Committees | 46 | ## INDUSTRIAL APPLICATIONS ## Progress in Industrial Application of Low Energy Radioisotope X-Ray Techniques #### J. R. RHODES #### INTRODUCTION One of the problems of a review such as this is to define its boundaries in time, space and subject matter. This paper reviews applications since 1967, with special reference to instruments and techniques in radio-isotope X-ray analysis that have found significant application in industry. Included are field and field-laboratory uses in the mining industry, and developmental equipment which is intended for industrial use. Radioisotope low energy X-ray fluorescence, absorption and backscatter are used in two main categories of measurement, coating thickness and elemental analysis. A convenient and self-consistent set of formulae and recipes suitable for calculating feasibility of these measurements by the above techniques, and by beta particle backscatter, has recently been published.² This review is confined to the two most significant areas of industrial application that have developed in the past three years, the use of portable radioisotope X-ray fluorescence analyzers and the installation of a number of on-stream process analyzers. Later in this volume Cameron³ will be discussing the state of the art in portable, laboratory and on-line methods of coating thickness measurement. Also Chen and Cahill⁴ will describe industrial application of X-ray fluorescence and absorption to the measurement of thickness. The range of applications of X-ray absorption and backscatter for analysis is not great enough to warrant special review. The main applications are to effectively two-component systems such as coal/ash⁵ and meat/fat,⁶ and to the determination of heavy elements in light matrices such as sulphur or cobalt in hydrocarbons.⁷ #### APPLICATIONS Half of all the papers published in the last three years describe portable analyzers and applications of them in various industrial and field en- vironments. Half of the rest describe applications to industrial process control. These include "on-stream" analyzers where a continuously moving sample of the plant stream is measured, and "off-stream" analyzers which measure discrete samples taken automatically. It is not known how many individual instruments are in use, but it is probable that the number of portable analyzers in use is much greater than the number of papers written on their use, since they have been commercially available for five years. However, other analyzers are not yet generally available, and the number in use is not likely to greatly exceed the number of papers written. Table 1 classifies, alphabetically by element, the significant analyses reported in the past few years in the above-mentioned areas. A study of the published feasibility investigations reveals that in about 60% of them the objective was to optimize the accuracy of major component determinations, and in the rest it was to obtain the best possible sensitivity. In the former case, the main sources of error are matrix effects. In applications of portable analyzers, much ingenuity has gone into devising methods of minimizing these errors without compromising the essential simplicity of the equipment and measurement procedures. We expect to see more development along these lines, as matrix effects appear to be one of the main obstacles to much more widespread field use. Sensitivity is limited by the basic considerations of counting statistics, and the fluorescent to scatter ratio. Using scintillation and proportional counters, detection limits of about 0.005% (and in favorable cases, 0.001%), can usually be obtained by one of two methods. The first is to use a source whose backscattered radiation is just resolved from the required characteristic X-rays. The second is to excite the required fluorescence with maximum possible efficiency using an energy just above the absorption edge of the element to be determined. Resolution limitations prevent employment of both these methods simultaneously with proportional or scintillation counters. They do not. however, when Si(Li) or Ge(Li) detectors are used, and in this case sensitivities of a few p.p.m. can be obtained even with heterogeneous ore samples. 8.9 It seems that the development potential of proportional and scintillation counters in this respect has been thoroughly investigated and largely exhausted. 10 This is not the case with Si(li) and Ge(Li) spectrometers where many studies using obvious combinations of high resolution detectors, monochromatic line sources and thin samples¹¹ (for example) have not yet been performed. We expect to see a rapid increase in the number of investigations in this area. TABLE 1 Analysis | Element
and % conc.
range | Material
(see Note 1) | Source
and
activity | X-ray
excit. | Filter | Analyzer
type (sec
Note 2) | Application | Detection limit happlication (or 1 \sigma prec.)* | Remarks | |--|---|--|-----------------|-----------|--|--|--|---| | Aluminum
2.4 Al ₃ O ₃
Barium
1-15 | Cement raw mix 13, 49 Barytes ores 41, 53 | *H/Zr, 3 Ci;
*10 PO; 10 mCi
*11 Am-Sm;
*11 Am-Ba, | AIK
BaK | IA | On-line P
(fused pellets)
On-stream S
(slurry) | Kiln-feed control trol Barytes flotation pilot plant | Kiln-feed con- 0.09% Al ² O ³ rol
Barytes flota- 0.01%
ion pilot plant | Also see under
Ca, Fe, Si
Balanced tar-
get method | | Calcium
40-50
1-5 | Cement raw mix ⁸⁶ Fe, 2 mGi
22
Silicate rocks ⁸⁶ Fe, 10 mG | 66Fe, 2 mCi
66Fe, 10 mCi | CaK
CaK | —
K/Ca | Portable S
Portable SS | Feasibility
study
Soil and rock | 0.2% CaO*
0.5% CaO* | Also see
under K | | 15–19 CaO | Sinter mix
44, 54 | 66Fe, 7 mCi | CaK | 1 | On-line P
(pressed | Blast furnace
control | 0.15% | Also see
under Si;
Fe | | 75-85 CaCO ₃
40-50 CaO | Cement raw mix ⁶⁶ Fe, 2 mCi
13, 48, 54
Cement raw mix ⁸ H/Zr, 3 Ci
13, 49 ⁹¹⁰ Po, 10 m(| ⁵⁶ Fe, 2 mCi
³ H/Zr, 3 Ci;
³¹⁰ Po, 10 mCi | CaK | 1 1 | On-stream P (slurry) On-line P (fused pellets) | Kiln-feed control | Kiln-feed con- 0.35% CaCO ^{33*} —
trol
Kiln-feed con- 0.16% CaCO* Also see
trol | Also see under Al, Fe; | | 40–50 CaO | Cement raw mix 53, 56 | *H/Ti, 5 Ci | CaK | | | Grinder
control | 0.4% CaO* | des cel | | 40-45 CaO | Cement raw mix "H/11, 3 Ci
45
Cement raw mix 109Cd, 1 mCi
47, 57 | ³ H/11, 3 Cl
¹⁰⁰ Cd, 1 mCi | CaK | 1 1 | On-stream F Alin-teed (powder) trol Powder sample Feasibility analyzer P study | Kun-teed con-
trol
Feasibility
study | | under Fe Reduced par- ticle size effects | TABLE 1 Analysis—continued | Element
and % conc.
range | Material
(see Note 1) | Source
and
activity | X-ray
excit. | Filter | Analyzer
type (see
Note 2) | Application | Detection limit (or 1 \sigma prec.)* | Remarks | |---------------------------------|--|------------------------------------|-----------------|-----------------|---------------------------------------|--|--------------------------------------|---| | Chromium | Steels 36 | ⁸⁶ Fe, 7 mCi; | CrK | Ti/V | Portable S | Alloy analysis | 0.1% Cr* | | | 0.5–8
0.5–5 | Steels 22
Electroplating | 338Pu, 20 mCi
34/Zr, 4 Ci | CrK
CrK | Ti/V
Ti/V | Portable S
Portable S | Alloy analysis
Feasibility | 0.15% Cr*
0.15% Cr | | | Copper
0.1–15 | bath solutions Copper ore pulps; *H/Zr, 12 Circockfaces 12, | *H/Zr, 12 Ci | CuK | Co/Ni | Portable S | study
Field assay | 0.2% Cu* | | | 0.4-4 | 14, 34
Cu ore pulps 55 | ³H/Zr | CuK | Co/Ni | Portable S | Draw control; 0.1% Cu*sub-level | 0.1% Cu* | | | 0.03-2.5 | Cu ore pulps 22 109Cd, 1 mCi | 109Cd, 1 mCi | CuK | Co/Ni | Portable S | caving
Feasibility | 0.03% Cu | | | 0.1–5 | Cu ore pulps
50, 60 | ³ H/Zr, 2.5 Ci | CuK | Cr/Mn,
Ni/Co | Portable S | study
Feasibility
study | 0.2% Cu* | Special method eliminates | | 0.1–10
0.4–1.6 | Core samples 58
Mn nodule | 288Pu, 30 mCi
286Pu, 20 mCi | CuK
CuK | Co/Ni
Co/Ni | Portable S
Portable S | Core analysis
Shipboard | 0.05% Cu* | matrix effects Also see under | | 60–95
0.1–26 | pulps 24
Cu alloys 36
Various
Cu-Pb-Zn ores
39 | 109Cd 2 mCi
288Pu-Ga,
30 mCi | CuK
CuK | Co/Ni
Cu | Portable S
On-stream
(slurry) S | assay
Alloy sorting
Mill control | 0.45% Cu*
0.08-1%* | Ni, Fe and Mn
See also
under Pb, Sn
and Zn | | Gold
0.01-1 | Simulated ores 23 | ⁶⁷ Co, 1 mCi | AuK | M/JH | Portable S | Feasibility
study | 0.03% Au | | | | | | 20. | ~ | o/ - | | | ·F · | , - ••• | | | | - | |--|------------------------------|--|-------------------------------|---|---------------------------|---------------------------|----------------|---------------------|---|--|----------------------------|---|---| | | | X-ray back-
scatter also | Also see
under Ca; Si | Also see
under Ca,
Fe: Si | Also see | | | Matrix;
particle | | Used nomograms | | Absorption edge analysis. See also under Cu. Sn. Zn | Comparison of sources | | 0.5% Fe* | 0.24% Fe* | ~ 1% Fe* | 0.2% Fe* | 0.05% Fe | | 0.003% Fe | 0.01% Fe | 0.08% Pb | 2% Pb*
0.25% Pb | I | 0.05% Pb | 0.04-0.34%
Pb* | 0.4% Pb | | Field assay,
mine control | Shipboard
assay | Strip mine
control | Blast furnace
control | Kiln-feed con- 0.05% Fe trol | Kiln-feed con-
trol | Pilot plant | Wear | Field analysis | Core analysis
Mine control | Field assay | Alloy sorting | Mill control | Feasibility study | | Portable S | Portable S | Portable S | On-line
(pressed | On-line
(pressed | On-stream (powder) P | On-stream (slurry) P | Assay G-M | Portable S | Portable S | Portable S | Portable S | On-stream
(slurry) S | On-stream S | | Cr/Mn | Cr/Mn | Cr/Mn | Cr/Mn | 1 | Cr/Mn | Cr/Mn | Fe | Ga/Ge | Ga/Ge | | W/Ir | 1 | ı | | FeK PbL | PbL
PbL
PbK | PbK | PbK | 1 | PbK | | 286Pu, 30 mCi | 889Pu, 20 mCi | 288Pu, 10 mCi | ⁸ H/Zr, 4 Gi | ³ H/Zr, 3 Gi
and ³¹⁰ Po,
10 mGi | *H/Ti, 5 Ci | 328Pu, 10 mCi | *H/Zr, 2 Ci | ***Pu, 30 mCi | 100Cd
288Pu, 30 mCi
57Co | 78Se | 168Gd, 0.6 mCi | ²⁴¹ Am, 5 mCi
⁵⁷ Co, 1.2 mCi | ¹⁸⁸ Gd, 1 mCi
¹⁸⁷ Cs, 1 Ci | | Iron ores (pulps; cores) 15, 57, 61 Lead-zinc ores | Manganese
nodule pulps 24 | Iron ores
(crushed rock)
57, 62-64 | Sinter mix 44, 54 sH/Zr, 4 Gi | Cement raw mix
13, 49 | Cement raw mix | Sand (slurry) 13 | Lubric, oil 57 | Ore pulps 66 | Lead ores 27 Core samples 58 Lead ores; mine walls 28 | Lead ores;
core samples 29,
30, 32 | Leaded brass;
steels 36 | Ores, zinc, concentrates, tailings 38, 39 | Solutions;
slurries 65 | | Iron
20-70
1-10 | 2-12 | 5-50 | 25–45 | 0.5-3 | 0.5-3 | 0.1–5 | 0.1 | Lead
0.05–30 | 1-8 | | 0.05-3 | 0.1–32 | 0.5-5 | Table 1 Analysis-continued | | | J | | | | | | | |--------------------------------------|---|-------------------------------|----------------------|--|-------------------------|---|--|---------------------------------------| | Remarks | Also see under Fe, Cu, Ni | | | | Also see under Nb; Sn | Also see un-
der Fe, Cu, Mn | Also see under
Mo; Sn | Also see under
Ca | | Detection limit (or 1 \alpha prec.)* | 0.75% Mn*
0.14% Mn*
0.04% Mn | 0.01% Мо | 0.003% Mo | 0.04% Mo
0.1% Mo*
0.002 to
0.01% Mo | | 0.05% Ni*
0.3% Ni | 0.01% Nb
0.06% Nb | ~ 0.5% K* | | Application | Shipboard
assay
Alloy sorting
Feasibility
study | Mine control | Feasibility
study | Alloy sorting
Alloy analysis
Feasibility
study | Pilot plan control | Shipboard
assay
Alloy sorting | Pilot plant
control
Alloy analysis | Soil; rock
type identity | | Analyzer
type (see
Note 2) | Portable S
Portable S
Portable S | Portable S | Portable S | Portable S Portable S Laboratory; on-stream SS | On-stream S | Portable S
Portable S | On-stream S
Portable S | Portable SS | | Filter | V/Cr
V/Cr
V/Cr | Y/Zr | Y/Zr | Y/Zr
Y/Zr
— | Y/Zr | Fe/Co
Fe/Co | Sr/Y
Sr/Y | CI/K | | X-ray excit. | MnK
MnK
MnK | MoK | MoK | MoK
MoK
MoK | MoK | NiK
NiK | NbK
NbK | KK | | Source
and
activity | ²³⁸ Pu, 20 mCi
³ H/Zr, 214 Ci
³³⁸ Pu, 20 mCi | 100Cd, 2 mCi | 109Cd, 1 mCi | 109Cd, 2 mCi
109Cd, 1 mCi
125I, 2 mCi | 147Pm/Al-Ag
1 Ci | ³⁸ Pu, 20 mCi
³ H/Zr, 2.5 Ci | ¹⁴⁷ Pm/Al-Ag,
1 Ci
¹⁰⁹ Cd, 2 mCi | ⁵6Fe, 10 mCi | | Material (see Note 1) | Manganese
nodule pulps 24
Steels 36
Plating bath
sol. 23 | Ore pulps;
Cu conc. 15, 61 | Ore pulps 23 | Steels 36
Steels 22
Mine samples,
Cu conc. slags 67 | Ore slurries 41 | Manganese
nodule pulps 24
Cu alloys 36 | Ore slurries 41
Steels 36 | Silicate rocks 18, 86Fe, 10 mCi
19 | | Element
and % conc.
range | Manganese 20-40 0.2-1.5 0.5-5 | Molybdenum
0.01-1
1-20 | 0.001-0.3 | 0.01–5
0.1–10
0.002–0.5 | 0.01-7 MoO ₃ | Nickel
0.8-1.6
3-30 | Niobium
0.01-5
0.06-2 | Potassium
1–5 | | Also see under
Fe; Ca | Also see under
Al, Ca, Fe | | Low noise | Paper com- | nuclear and
non-nuclear
techniques | | | | | Feasibility | study
See also under
Mo, Nb | | |-----------------------------------|---|---------------------------------|--------------------|--------------------------|--|---|---------------------------------|----------------------------|---------------------------------|---------------------------------|--|-------------------------------------| | 0.17% SiO ₈ | Kiln-feed con- 0.13% SiOs trol | 0.003% Ag | 0.17% S | 0.03% Sos | | 0.03% Sn | 0.1% Sn | 0.1% Sn | 0.1% Sn | 0.005% Sn | 0.005% Sn | 0.2% Sn* | | Blast furnace
control | Kiln-feed control | Field assay | Feasibility | Feasibility
study | | Mine control | In situ assay | In situ assay | Core analysis | Geochemical | Process control | Alloy sorting | | On-line (pressed | penets) r
On-line
(fused
pellets) P | Portable S | Portable S | On-stream P | | Portable S | On-stream (slurry) S | Portable S | | I | I | Mo/Rh | P/S | P/S | | Ag/Pd | Ag/Pd | l | Ag/Pd | Ag/Pd | Ag/Pd | Ag/Pd | | SiK | SiK | AgK | SK | SK | | SnK | SnK | SnK | \mathbf{SnK} | SnK | SnK | $\mathbf{S}_{\mathbf{n}}\mathbf{K}$ | | ³H/Zr, 4 Gi | ³ H/Zr, 3 Ci;
²¹⁹ Po, 10 mCi | ¹⁴⁷ Pm/Al, 0.5
Ci | ³H./Ti, 5 Ci | ⁶⁵ Fe, 10 mCi | | 147Pm/Al,
0.5 Ci | ¹⁴⁷ Pm/Al,
0.5 Ci | seS/Ba | ¹⁴⁷ Pm/Al,
0.5 Ci | ¹⁴⁷ Pm/Al,
0.5 Ci | ²⁴¹ Am-Ba,
²⁴¹ Am-Sn,
14 mCi | 147Pm/Al,
0.5 Ci | | Sinter mix 44,
57 | Cement raw mix
13, 49 | Ag ores 8 | Pulverized coal | Stack gases 70 | | Tin ore pulps 12, 147Pm/Al, 33, 34 . 0.5 Ci | Tin mineralization 14, 34, 68 | Tin mineraliza-
tion 28 | Tin ores, cores
39, 58 | Tin mineraliza-
tion 69 | Tin ore slurries
35, 39, 41 | Bronzes; gun
metals 36 | | Silicon
12–16 SiO _s | 14 SiO ₂ | Silver
0.01-0.1 | Sulphur
0.1–5 S | 0.01-0.5 SO ₂ | | Tin
0.05-25 | 0.5–5 | 0.5-5 | 0.5-5 | 0.002-0.1 | 0.01-2 | 0.1-11 |