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Preface

This book is written for scientists and engineers whose work involves wave reflec-
tion or transmission. Most of the book is writter in the language of electromagnetic
theory, but, as the title suggests, many of the results can be applied to particle
waves, specifically to those satisfying the Schrédinger equation. The mathematical
connection between electromagnetic s (or TE) waves and quantum particle waves
is established in Chapter 1. The main results for s waves are translated into
quantum mechanical language in the Appendia. There is also a close analogy
between acoustic waves and electromagnetic p (or TM) waves, as shown in
Section 1-4. Thus the book, though primarily intended for those working in optics,
microwaves and radio, will be of use to physicists, chemists and electrical engineers
studying reflection and transmission of particles at potential barriers. The tech-
niques developed here can also be used by those working in acoustics, ocean-
ography and seismology.

Chapter 1 is recommended for all readers: it intreduces reflection phenomena,
defines the notation, and previews (in Section 1-6) the contents of the rest of the
book. This preview will not be duplicated here. We note only that applied topics
do appear: two examples are the important phenomenon of attenuated total
reflection in Chapter 8, and the reflectivity of multilayer dielectric mirrors in
Chapter i2. The subject matter is restricted to linear classical electrodynamics in
non-magnetic media, and the corresponding particlc analogues. Phenomena in
non-linear and quantum optics are not covered. E 'en with these restrictions the
book has grown larger than originally planned.

My interest in: the theory of reflection was stimulated by David Beaglehole’s
studies of interfaces by polarization modulation ellipsometry, and work in this field
was made more enjoyable by the many discussions we have had.

The editor of rhis series, John Heading, has kindly made many comments and
suggestions as the book was being written. This generosity with his time and
expertise is greatly appreciated, especially in view of his widespread commitments.

Almost all the book was written while I was a Visiting Fellow at the Departmant
of Applied Mathematics of the Australian National University. The warm
hospitality of Barry Ninham and his colleagues combined with the beauty of the
Australian bush, coast and wildlife to make the year here a delight. My family only
wished that more time could be given to expioring Australia, and less to the book!

X1



Preface

I was fortunate to have overlapped with Colin Pask for part of the stay here.
Through incisive comments he influenced the form and content of the book,
especially the chapters on Riccati-type equations, inversion problems, and pulse
and beam reflection.

Finally, special thanks are due to Kayleen Scott and Diana Wallace, who
produced a professional word-processed text while coping with all the usual
demands on their time.

JOHN LEKNER
Canberra, June 1986
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Introducing reflection

Electromagnetic, acoustic and particle waves all scatter, diffract and interfere.
Reflection is the result of the constructive interference of many scattered or
diffracted waves originating from erers in a stratified medium. This fundamental
many-body approach is hard to apply (two illustrations are given in Section 1-5).
Usually one replaces the collection of scatterers by an effective medium whose
properties are represented, as far as wave propagation is concerned, by a function
of position and frequency (or energy), such as the dielectric function g in-the
electromagnetic case, or the effective potential ¥ in the quantum particle case.
Electromagnetic and particle waves then satisfy the same kind of linear partial
differential equation, with £ and V playing similar roles.

In a medium with planar stratification the functions ¢ and V depend on only one
spatial variable, and the partial differential equations then separate. Snell’s Law is
a direct consequence of this separability of the spatial dependence. The differential
equations, and the elementary reflection properties which foilow from them, are
derived for electromagnetic, particle, and acoustic waves in the first four Sections.
The many-body, constructive interference, aspect of reflection is outlined in
Section 1-5. Finally, Section 1-6 previews some of the main results in Chapters 1
to 13. .

1-1 The electromagnetic s wave

The reflection of a plane electromagnetic wave at a planar interface between two
media is completely characterized when solutions for two mutually perpendicular
polarizations are known. The polarizations conventionally chosen are: one with its
electric vector perpendicular to the plane of incidence (labelled s, from the German
senkrecht, perpendicular), and the other with its electric vector parallel to the plane
of incidence (labelled p).

We consider monochromatic waves, of angular frequency w. The reflection of a
general electromagnetic wave (a pulse, for example) can be analyzed as that of a
superposition of monochromatic waves. For a given w the time dependence of all
fields is carried in the factor e™*'. (This is the convention in quantum and solid

1
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Chapter 1 Introducing reflection

state physics, and much of optics. In radio and electrical engineering the factor e*
is often used. With the convention used here the dielectric function has positive
imaginary part in the case of absorption) We will consider only non-magnetic
media in this book. The electrody~amic properties of a medium are then contained
in the dielectric function &(r, w) whict: is the ratio of the permitivity of the medium
at position r and angular frequency © to that of the vacuum. The wave equations
follow from Maxwell’s two curl equations relating the electric field E and the
magnetic field B:

VxE = iwB or VxE=i‘—:3B, )
LW

(The equations on the left are in 5. units, those on the right in Gaussian units; the
difference lies in the positioning of the speed of light ¢. In reflection =tudies, theory
and experiment deal in dimen: »aless ratios, and the choice of 1.7 - irrelevant.
Even the formal distinction di: :ppears from equation (5) onward,,

For a planar interface lying in the xy plane, and an electromagnetic wave
propagating in the x and z directions, the s wave has E = (0, £, 0) and (1) gives

OE, w OFE ®

VxB = E « VxB = ~.-}:%E,, )

- _Z - — -—1 -— 5
F= i p B, e i = B, A3)
and B, = 0. The other curl equation gives
dB, JB, . @
oz ax - %7 E,. : 4

On climinating B, and B, from (3) and (4), we obtain a second order partial
differential equation for E,,

2
,‘?E +€§+6%E, =0 o )

For planar stratifications the dielectric function depends on one spanal vanable
2. The partial differential equation is then separable, with :

E(x,z,0) = " ™K, o - ©
where F(z) satisfies the ordinary differential equation
£E " .

The meanings of k, K and ¢ are evident from (5),7(6) and (7): k = £w/c is

the local value of the wavevector, K = k, is the component of the wavevector
along the interface, and ¢ = k, is the component of the wavevector normal
to the interface. For a plane wave incident from medium 1 as shown in Figure 1-1,

2



I-1 The electromagnetic s wave

el‘ eZ ré
8,
g, €
t
5
Fiz. - 1-f. Reflection of the elect  ..agnetic s wave at a planar interface between wedia characterized

b:-xtric constants g and £- s he figure is drawn for the air-water interface at - tical frequencies,
with e, = 1, 6 = (4/3)%

the existence of the separation-of-variables constant K(=k,;, = k{,) implies

Rsin@, = e?sin @ = & sin 8, ®)
where 8,, 6 and 0, are the angles of incidence, reflection, and transmission (or
refraction).

Thus the fact that ¢ is a function of one spatial coordinate only, and the
consequent separation of variables, implies the laws of reflection and refraction:
the angle of reflection is equal to the angle of incidence, and the angles of incidence
and refraction are related by Snell’s Law. The refractive indices n, and n, of the two
media, defined as coefficients in Snell’s Law n, sin 8, = n, sin 8,, are \/¢, and /e,.
Note that the laws of reflection-refraction do not depend on the transition between
the two media being sharp: they are valid for an arbitrary variation of &(z) between
the asymptotic values ¢, and ¢,.

As ¢ attains its limiting values ¢, and ¢;, ¢ = (ew?/ — Kz)”2 takes the llmmng
values

-

© S
g = 'Q?cos 6., g = 32’"2-C—cos g,. . 9)

(For 8, > 6. = arcsin (n,/n,) there is total reflection, g, is imaginary, and 6, is
complex. This is discussed along with the particle case in Section 1-3.) Snell's Law
and the relationships between the wavevector components are mcorporawd
together in Figure 1-2.

We now define the reflection and transmission zmplitudes r, and ¢, in terms. of
the lumtmg forms of the so]unon of (T):

T e e E2) o 1 e ’ : (10)

The reflection amplitude is thus defined as the ratio of thg' coefficient of e~ to that
of ¢“", the transmission amplitude as the coefficient of ¢ when the incident wave

3



Chapter 1 Introducing reflection

81 62

g,=k;cos 8, qs=k,cos 6,

Figure 1-2. Graphical representation of K2 = ¢ + K* and K = k, sin 8, = k, sin 8,. The figure is
drawn for the air-water interface, as in Figure 1-1.

€“" has unit amplitude. Theory aims to obtain general properties of the reflection
and transmission amplitudes, and to develop methods for calculating these for a
given dielectric function profile. The calculation is simple for the important step
profile

£ (z <0)
Mﬁ={ an
£ (z > 0).
For this profile we obtain r, and ¢, from the continuity of E and dE/dz at z = 0.
(If, for example, dE/dz were discontinuous, d’ E/dz* would have a'delta function
part, and (7) would not be satisfied.) For the step profile, E is given by the left and
right sides of (10)forz < 0and z > 0, respectively. The continuity of Eand dE/dz
at the origin gives

1 +ry = 1, (1 — ry) = igitg. (12)
Thus
@ — 4 2q,
el N 13)
@+ q ° q + g (

On using (8) and (9), the expressions (13) may be put into the Fresnel forms
(Fresnel, 1823)

.o sin (0, — 6,) - 2 sin §, cos 6,
7 sing, + 6,) 7 sin(9, + 6)°
1

- The phases of the reflected and transmitted waves are specified only when the
phase of the incident wave and the location of the interface are specified. The above
equations are for the discontinuity in ¢(z) located at z = 0. In general, for the step
located at z,,

(14

- eliq|z| ql - q2 ’ tm — ei(ln —q)z) ZQI . (15)
@+ q a9+
A special situation arises at grazing incidence (8, — n/2, ¢, -+ 0), when the incident

. and reflected waves are propagating in the same direction. Then the phase of the
reflected wave is well-defined without specification of the interface location, and

o
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1-2  The electromagnetic p wave

0 +
0° 30° 60° 90°
0,

Figure I-3. Step profile reflectivity for the 5 wave. The parameters are for the air-water interface at
optical frequencies, as in Figures 1-1 and 1-2. The full curve is for light incident from air; the dashed
curve for light incident from water shows total internal reflection for 8, > 6, ~ arcsin (3/4) ~ 48.6°.

ro — — 1 (even in the case of the total internal reflection, when g, is imaginary).
The fact that r, - — 1 at grazing incidence is a general property of all interfaces,
as will be shown in Section 2-3.

The classical electromagnetic fields E and B are real quantities, and the complex
notation is used for mathematical convenience. (Complex fields are intrinsic in the
quantum theory of particles, however.) The physical reflected s wave is, fof unit
amplitude of the incident wave,

Re {r,exp i(Kx — ¢,z — w1)} = Re(r,)cos (Kx — ¢,z — o)
— Im (r,) sin (Kx — ¢,z — wt).
The intensity is proportional to the time average of the square of this, namely
HRe ()P + i{Im (r)) = i

The incident intensity is proportional to the time average of cos’(Kx + ¢,z — wi),
which is 1/2. Thus, R, = |r,{*is the ratio of the reflected intensity to the incident
intensity. This quantity is called the reflectivity, or reflectance. Figure 1-3 shows R,
for a sharp transition between air and water, with light incident from air, and from
water,

1-2 The electromagnetic p wave

We again take the incident and reflected waves propagating in the zx plane, and
the stratifications lying in xy planes. For the p wave, B = (0, B,, 0); the Maxwell
equation (1) gives

0E,  OF,
0z ax

13

¥

. W
— B, | (16)



Chapter 1  Introducing reflection
while (2) implies E, = 0 and

- .
B 6 %g, B 5%, an
‘z c ox c

Elimination of E, and E, gives

& (1B @ (10B)

—(=IZ iy i dad. =~ B = 0. 18

ﬁx(s E)x)+az(£ Bz)+ > 0 (1%
When & is a function of one spatial coordinate z, the laws of refiection and
refraction again follow from the separability of (18). We set '

B.(x,z, 1) = e -on g (19)

where X has the same meaning as for the s wave; then B(z) satisfies the ordinary
differential equation

: s 2 KZ
(129)_{.(.“’_2__\'3 - 0. (20)
¢ dz ¢ &

When ¢ is constant (outside the interfacial region), the p wave equation has the
same form as the s wave equation, with the same wavevector component g perpen-
dicular to the interface. But within the interface there is an additional term
proportional to the product of de/dz and dB/dz. This term may be removed (and
(20) converted to the form of the s wave equation (7)) in two ways. The first
involves defining a new dependent variable

e\ , »
b = (J) B. (21)
£
(The factor ¢}’> makes identical the limiting forms of b and B in medium 1.) The
equation satisfied by & is

2 2 112 dzE“‘m 1 d%e 3 (1 ds)z

a’b
Fteb =0 a4 =7a--m =t a eI
' 22)

This form of the p polarization equation is useful for special profiles, in particular
- the exponential profile, which has loge linear in z, and the Rayleigh profile, which
" has £7'? linear in z. Thess are discussed in Chapter 2. It is also useful at short
wavelengths, in the derivation of a perturbation theory for the p wave (Chapter 6).

The second transformation which removes the (de/dz) (dB8/dz) term is a dilation
of the z variable in proportion 1o the local value of &(z): we define a new independent
variable Z by

dZ = edz. \ ' (23)
Then, as may be seen on division of (20) by ¢, the p wave equation reads

d’B ) , 1wt K* ,

‘d—Zi +‘ Q B = 0. Q = ; F - ?— (24)



1-2  The electromagnetic p wave

This equation, in terms of the dilated z variable, and a reduced normal component
of the wavevector, 0 = g/e, will be useful in many applications thoughout this book.

The p wave reflection and transmission amplitudes are defined in terms of the
limiting forms of B(z):

1/2
e"n: _ rpeﬂqlz - B(Z) - (2_2) tp e‘qzz (25)
1
The reason for the factors — 1 and (g, /¢,) " multiplying r, and ¢, is that we wish r,
and r, and 1, and ¢, to refer to the same quantity, here chosen to be the electric field.
(This is not the only convention in use: some authors have the opposite signon r,.)
The clectric field components for the p wave are found from (23, (19) and (25) to
have the limiting forms
1/2

cos 6 l l Exeupr ml)’ (26)

HKx+grz—wl)

27N

The x-component of the electric field {1 -crrial to the interface) . has the
reflection amplitude r,, while the z-component (normal to the interface) has
reflection amplitude —r,.

At normal incidence there is no physical difference between the s and p polar-
izations:; both have electric and magnetic fields tangential to the interface. For our
geometry, E, is zero at normal incidence, and (1) implies 0E, /0z = iw/c)B,. Thus
B, the solution of (20) and (25), must be proportional to dE/dz, where E is the
solution of (7) and (10). On substituting dE/dz for B in (20) (with K set equal to
zero) the left side becomes

d (1 /dE sz
ziz\az ezt

and this is zero, by (7). Thus (20) is satisfied by dE/dz at normal incidence. The
proportionality of B and dE/dz at normal incidence, when applied to the limiting
forms (10) and (25), gives the equality of r, with 7, and of ¢, with ¢,. (Proportionality
of B and dE/dz could be replaced by equallty of B and (c/zco) dE/dz, but then (25)
would have to be modified by the factor &1?))

At a discontinuity in the dielectric function, B and dB/edz = dB/dZ are con-
tinuous (from (20) or (24)). For the step profile ¢,(z) defined by (11), B is equal to

e —ree ™ (z < 0)

g, " cos B e + e Y E g

ﬁ;ruz sin 81 ci(lor—uu) (e'ﬁz o rp e R I Ez - —81 12 sin 9::['{)

By(2) = o (28)
’ (8—2) e (z>0).
€
The continuity of B and dB/e dz at the origin gives
| (s«\m )
— T = \;I/‘ I,,O ( 9)
AR
01+ 1) = () b (30)
AT



Chapter 1 Introducing reflection

1 - —_—

[4] ¥ y
0° 30° 60° aQ°
8,

Figure 1-4. Step profile reflectivity for the p wave, for the air-water interface. The full curve is for light

incident from air, the dashed curve for incidence from water. Note the zeros at the Brewster angles,
arctan (4/3) ~ 53.1° and arctan (3/4) =~ 36.9°, respectively.

where Q, = ¢,/¢, and @, = ¢,/¢,. Thus (compare (13))

-0 2] "2 - 20,
e T 9T o) (e) "= Gt 0 Gh

On using (8) and (9) we obtain the Fresnel forms

_tan(6, — 8,) - , 2 sin 8, cos 6, 32)
= wn@,+0) P " sin@ + 0,)cos (6, — 0,)

The reflectivity of the p polarization off a discontinuity in the dielectric function is
shown in Figure 1-4.

From (31) we see that the p wave shows zero reflection when @, = Q,, that is
at the Brewster angle '

192 ' ‘
0, = arctan (fi) . , 33

&

It is apparent from (24) that this angle has special significance not only for a sharp
transition between two media, but for diffuse profiles as well. This is because the
wave equation in the dilated variable Z links two media with effective wavevector
components (), and Q,, which are equal at this angle. The difference between the
s and p effective wavevector componénts g and Q, and the reason for small p
reflectivity at the Brewster angle, are illustrated in Figure 1-5. There we show ¢
versus z and Q” versus Z for the hyperbolic tangent profile

ez) = e + &) — (e — &) tanh z/2q, (34)
for which
Z = L( + &)z — (& — &)a log cosh (z/2a). 35)



1-2  The electromagnetic p wave

(cqyw)? (cQ/w)?

0\
8 \\\h 9__//
—

- z/a T T Z/a
5 0 5 -5 0 5

Figure 1-5. Squares of the normal wavevector component ¢ and of the effective normal component @

for the s and p waves. The figure shows ¢?(z) and Q%(Z) for the hyperbolic tangent dielectric function

profile, at three angles of incidence. The upper curve (in each case) is for normal incidence, the middle

curve is at the Brewster angle 8, = arctan (g, /¢,)", and the lower curve is at the critical angle for total

internal reflection, 8, = arcsin (&,/¢,)"2. The dielectric constants ¢, = (4/3)’ and &, = 1 approximate
-~~~ the water-air-interface. Water is on the left in both diagrams.

At the Brewster angle 6,

R R (w/c) s
v = 3 = = R 36
o Q“ 6 + 6 8 (36)
K = ¢4 QZB = Kf,. 37
From (24), a general profile &(z) has Q? at the Brewster angle given by
. o’ £,8, R
Q° (05, 2) = 2 {5(2) - m}/ﬁ (2). (38)

Thus the bump in Q? at the Brewster angle (see Figure 1-5) has the analytic form

@’ (& — &)(e — &)

— 2 = —_——_ - 7
QZ(BB,Z) o) P 82(81 T &) . 39

The p wave equation in the Z,Q notation has reflection at §; due to the small
variation in the effective wavevector component Q as given by (39). For the step
profile, € is either ¢, or ¢, and there is no variation in ¢ and thus no reflection.

A common explanation for the small reflection of the p polarization at 6, is in
terms of the angular dependence of the dipole radiation from each atom or
molecule which produces the transmitted and reflected waves. The far-field radiation
pattern of a dipole has zero amplitude along the line of oscillation of the dipole (see
Section -5, equation (78)); this is the reason for the polarization of light from the
sky. We see from (32) that r, is zero when 6, + 6, = n/2, that is when the
refracted and reflected waves are at a right angle (see Figure 1-6). The argument
goes that at this angle of incidence there is no radiation from the accelerated
electrons in the material to produce a p-polarized signal in the direction of specular

9



