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This book introduces the fundamentals of compressible-fluid motion, or
gasdynamics. It-is intended as a text for senior and graduate students in
engineering, physics, and applied mathematics. It may also be useful as
a source for applied researchers in various fields.

The first three chapters are introductory in nature and are included
to provide a self-contained treatment of fluid mechanics. Chapters 1 and
2 concisely present the relevant continuum ‘mechanics and thermodynamics;
Chapter 3 is a description of d1mens1onal reasoning as it applies to com-
pressible-fluid flow. A student who encounters this material for the first
time in these chapters will likely find it heavy going: on this account some
previous preparation in the form of a first course in fluid mechanics and in
thermodynamlcs is desirable. Those students who. already enjoy adequate
preparation in these areas may wish to skip this material altogether.

This book contains more material than can reasonably be covered in
a normal one-semester or one-quarter course. The selection of material
suitable to a particular course can safely be entrusted to the instructor.

There are already several excellent books in the field of gasdynamics,
in particular Shapiro’s Compressible Fluid Flow and Liepmann and Roshko’s
Elements of Gasdynamics. 1 have enjoyed the considerable advantage of
reading these works as a student and as a teacher, and acknowledge my
debt to them. Merely to retread the ground already covered by these
existing works would, however, be wasteful and self-defeating. What is
offered here is not a redigest of some venerable work but a book whose
merits and deficiencies are peculiarly its own. They can best be assessed
by reading the book itself.

In selecting the material to be covered, I have tried to emphasize
fundamental topics such as acoustics, shock waves, and the nature of
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compressible flow itself. In short, the selection has favored fundamentals
over techniques. In choosing specific problems for consideration, I have
preferred those which seem to be accessible to ordinary experience: along
these lines, no special effort has been made to treat somewhat esoteric
subjects such as high-temperature gases or fluids far from thermodynamic
equilibrium.

Many individuals have given valuable help along the road to publi-
cation. The manuscript has been read and criticized in its entirety by
Louis Solomon. It has been read and criticized in its various parts by
several of my colleagues at Rensselaer, in particular Steven Ball, Henrik
Hagerup, Gerald Kliman, Howard Littman, Charles Muckenfuss, Euan
Somerscales, and Hendrik Van Ness. The thorough review of the manu-
script by Richard Corlett and the many corrections to it by Howard
Cyphers have been especially helpful. ~Assistance in calculation has been
given by E. T. Laskaris, Michael Liu, Dean Nairn, Antonio Artiles, and
Pedro Porrello. Editorial help at a very practical level has come from
Bruce, Claudia, Stephen, and Jean Thompson. The typing has been most
effectively handled by Joanne Margosian. To all these individuals, and
several others unnamed, my thanks.

This book could be written only in a situation where individual
enterprises of this kind are encouraged: the support of the School of
Engineering at’ Rensselaer Polytechnic Institute, ard of Hendrik Van Ness
in particular, has been invaluable. Finally, I would like to acknowledge
the influence of a zealous advocate of vectors, Kenneth Bisshopp, and of a
fine teacher, Ascher Shapiro, who first introduced me to this subject.

Philip A. Thompson
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Constant in Tait equation
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. 0
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Specific heat at constant volume, ¢, = »(56%)”
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Component of rate-of-deformation tensor
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2
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Cartesian unit vector

Integral
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Imaginary part of following expression
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P Boltzmann constant:

Wave-number vector, k = ke
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Rate of mass flow
Mach number, M = %; total mass
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Unit normal vector
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Pressure (absolute)
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Traffic flow rate, qv = pu
Heat-flux vector

Spherical or cylindrical‘ coordinate; number of variables with
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Universal gas constant, R = Nk
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Reynolds number, Re = Lu
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Time
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Cartesian space coordinates

Cylindrical coordinate; altitude above sea level

Attenuation coefficient; constant; amplitude function; thermal
diffusivity, « = «/pc,

Bulk coefficient of thermal expansion, 8 = % (g—;—)
P

angle; coefficient in linearized equation, 8 = |V M2 — ||

; shock-front

Ratio of specific heats, y = -g’-’; exponent in Tait equation
. . . . p3ct (%
Dimensionless thermodynamic variable, I' = 5 ('8755)
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Small change; diffusivity, § = 4/ 3P+ Py yP_r ! %; ratio of

specific heats, 8 = f#; boundary-layer thickness
r9

Kronecker delta
Change; decibel level; shock-front thickness

Small quantity; deviation of shock-front angle from Mach
angle, e = 8 — u; energy per molecule

Levi-Civita triple-index tensor

Similarity variable; mass fraction

- Flow angle; temperature

Thermal conductivity
Wavelength
Molecular mean free path

Viscosity (ordinary shear viscosity); Mach angle, p = sin~? JM

Bulk viscosity

- Kinematic viscosity, v = f—; ; frequency

Fluid-particle displacement; mass displacement
Entropy flux
Pi, » = 3.14159. ..
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1 Dimensionless pressure jump, JI = P[f:z; general dimgnsionless
quantity

I, Molecular momentum flux

p Density

o Molecular diameter

Oy Component of stress tensor

z Sum; function of spatial coordinates

Zik Component of viscous stress tensor

T Relaxation time; dimensionless time

T Dissipation function, T = X, D,,

¢ Velocity potential

@ Intermolecular potential

P, Acoustic energy flux (intensity)

P, Acoustic momentum flux

X Mole fraction

¥ Polar coordinate; stream function

¥ Force potential

w Angular frequency, w = 2mv; Prandtl-Meyer function

Q Vorticity vector, @ =V X u

Qe Component of spin tensor
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descriptions of fluid motion

Introduction

Fluid mechanics is the study of the motions of gases and liquids. Gas-
dynamics, or compressible-fluid flow, is the study of those motions for
which changes in fluid density play an essential role.

Although there is some density change in every physical flow, it is
often possible to neglect such changes and to treat the flow according to
the idealization that the fluid is incompressible. This approximation may
be applicable to gases, e.g., in low-speed flow around an airplane or flow
through a vacuum cleaner, as well as to liquids.

On the other hand, the very small density changes associated with
acoustic motions in liquids and gases cannot be neglected. Discussion of
the precise conditions under which density changes must be considered
will require the development of a little analytical apparatus and will be
postponed to Chap. 3. Anticipating the results of that discussion, we
simply set down the main practical categories of motion for which fluid
compressibility plays a crucial role:

1 Wave propagation within the fluid

2. Steady flow in which the fluid speed is of the same order of magnitude as
the speed of sound

3 Convection driven by body forces, e.g., gravity, acting on fluid subject to
thermal expansion :

4 Large-scale convection of gases in the presence of body forces



2 ‘ Descriptions of fluid motion

This list is not necessarily exhaustive, and some motions may fit into more
than one category. This book is devoted mostly to the first two categories
of motion, which have in common a relation to the fluid sound speed.

The principal equations of motion are developed in fairly general
form in this chapter. This level of generality is not required for many
of the applications, e.g., viscous forces can be neglected in many problems,
but will permit us to arrive rationally at the various simplifying approxi-
mations. Some of the detailed steps will be omitted from the derivations
given in this chapter. For a more complete treatment, see Batchelor
[1967, chaps. 1-3] or Aris [1962, chaps. 1-6].

The equations of motion are developed from the concept that the
fluid is a continuum; i.e., the fluid is considered to be matter which exhibits
no structure, however finely it may be divided. This model makes it
possible to treat fluid properties (such as density, temperature, and
velocity) at a point in space and mathematically as continuous functions
of space and time. The application of such a model to fluid motion is
due principally to Leonhard Euler (1755). Treatments of fluid mechanics
and solid mechanics from the continuum viewpoint have much in common
(many of the equations in this chapter are applicable to fluids and solids
indifferently, in fact), and the subjects taken together are called continuum
mechanics. ' ‘

There is an alternative way of proceeding, which begins with the
particulate view of matter and by averaging over large numbers of mole-
cules arrives finally at the continuum equations. This method, while
perhaps more general in principle, is limited by practical difficulties to the
Boltzmann equation applied to a dilute gas and will not be pursued here.

The continuum model may be expected to fail when the size of the
fluid region of interest is of the same order as a characteristic dimension
of the molecular structure. A suitable characteristic dimension for gases
is the mean free path A (of the order of 10-7 m for air at standard con-
ditions). For liquids, a corresponding characteristic molecular dimension
is not clearly d'e‘ﬁne,d but may be taken to be a distance equal to several
intermolecular spacings (for water, the intermolecular spacing L is of the
order of 107'°®m). These dimensions are so small that the continuum
model is violated only in extreme cases; two examples are the motion of
dust or smoke particles of very small diameter d in the atmosphere (with

-d ~ A) and the propagation of high-frequency sound of wavelength X in
gases (with A ~ A) or even in liquids (with A ~ L). On the other hand,
the mean free path A varies inversely with the density of a gas, so that
under conditions of very low pressure, ¢.g., at high altitudes or in a vacuum
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chamber, even relatively large fluid regions cannot be described by the
continuum model. We will be concerned only slightly with such extreme
cases and adopt the continuum view henceforth. Occasional use will be
made, however, of results from the elementary kinetic theory of gases,
i.e., the particulate view, where such results enhance our physical insight
for the problem of fluid motions.

1.2 Dynamical laws of motion

A natural concept within the continuum model is that of the material
volume. This is an arbitrary collection of matter of fixed identity enclosed
by a material surface (or boundary) every point of which moves with the
local fluid velocity. This surface is purely hypothetical and in general
does not correspond to any physical boundary in the flow: it may be
helpful to imagine it as a perfectly flexible and extensible membrane of
zero mass. As the material volume moves through space, it is deformed
in shape and changed in volume, as sketched in Fig. 1.1. We will refer
to the material volume as V(¢) and the material surface as S(z). If the
volume V(¢) is shrunk to a point, the resulting material point is called a
Sluid particle.

By definition, the surface S(¢) is impenetrable to matter: inter-
diffusion of chemical species thus cannot be accounted for by this particular
model.

The dynamical laws of motion, from which most of the equations
in this book are deduced, are stated for a material volume as follows:

1 Conservation of mass (continuity): The mass of a material volume is
constant.

2 Balance of linear momentum (Newton’s second law): The rate of change of
the material-volume momentum is equal to the sum of the surface forces
(due to pressure and viscous stresses) and body forces (such as gravity)
acting upon'it.

Figure 1.1
Material volume at time ¢ and at time ¢ + Atz




