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PREFACE

Tue theory of equations is not only a necessity in the subsequent
mathematieal courses and their applications, but furnishes an illumina-
ting sequel to geometry, algebra and analytic geometry. Moreover,
it develops anew and in greater detail various fundamental ideas of
caleulus for the simple, but important, case of polynomials. The
theory of equations therefore affords a useful supplement to differential
calculus whether taken subsequently or simultaneously.

It was to meet the numerous needs of the student in regard to his
" earlier and future mathematical courses that the present book was
planned with great care and after wide consultation. It differs essentially
from the author’s Elementary Theory of Equations, both in regard to
omissions and additions, and since it is addressed to younger students
and may be used parallel with a course in differential calculus. Simpler
and more detailed proofs are now employed. The exercises are simpler,
more numerous, of greater variety, and involve more practical applications.

This book throws important light on various elementary topics. .

For example, an alert student of geometry who has learned how to bisect
any angle is apt to ask if every angle can be trisected with ruler and
compasses.and if not, why not. After learning how to construct regular
polygons of 3, 4, 5, 6, 8 and 10 sides, he will be inquisitive about the
missing ones of 7 and 9 sides. The teacher will be in a comfortable position
if he knows the faets and what is involved in the simplest discussion to
date of these questions, as given in Chapter II1.. " Other chapters throw
needed light on various topics of algebra. In particular, the theory
of graphs is presented in Chapter V in a more scientific and practical
manner than was possible in algebra and analytic geometry.

There is developed a method of computing a real root of an equation
with minimum labor and with certainty as to the accuracy of all the
decimals obtained. We first find by Horner’s method successive trans-
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formed equations whose nurnber is half of the desired number of significant
figures of the root. The final equation is reduced to a linear equation
by applyving to the constant term the correction computed from the
omitted terms of the second and higher degrees, and the work is completed
by abridged division. The method combines speed with control of
aceuracy. '

Newton’s method, which is presented from both the graphical and
the numerical standpoints, has the advantage of being applicable also to
squations which are not algebraic; it is applied in detail to various such
equations.

In order to locate or jsolate the real roots of an equation we may
employ a graph, provided it be constructed scientifically, or the theorems
of Descartes, Sturn, and Budan, which are usually neither stated nor
proved correct!v

The long chapt. - on determinants is independent of the earlier chap-
ters. The theory of a general system of linear equations is here pre-
sented also from the standpoint of matrices.

For valuable suggestions mede after reading the preliminary manu-
script of this book, the author is greatly indebted to Professor Bussey
of the Univ  ty of Minnesota, Professor Roever of Washington Uni-
versity, Profes. =~ Kempner of the University of Illinois, and Professor
Young of the University of Chiéago. The revised manuscript was much
improved after it was read critically by Professor Curtiss of Northwestern
. University. The author’s thanks are due also to Professor Dresten of

the ' University of Wisconsin for varlous useful suggestions on the
proof-sheets, .
Cruicaco, 1921,
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First Course in
The Theory of Equations

CHAPTER I

CompLEX NUMBERS

1. Square Roots. If p is a positive real number, the symbol Vp is
used to denote the positive square root of p. It is most easily computed
by logarithms.

We shall express the square roots of negative numbers in terms of the -
symbol i such that the relation 2= —1 holds. Consequently we denote
the roots of z2=—1 by iand —%. The roots of 22= —4 are written in the
form =+2¢ in preference to +Vv —4. In general, if p is positive, the roots
of 2= —p are written in the form +V'p i in preference to +V =p.

The square of either root is thus (\/;)’i’= —p. Had we used the less desirable
notation +V —P for the roots of z2= —p, we might be tempted to find the square of
either root by multiplying together the values under the radical sign and conclude

erroneously that - .
To prevent such errors we use ‘\/;_n' and not v —p.

2. Complex Numbers. If a and b are any two real numbers and

¢ 2= —1, a+bi is called a complex number ! and a—bi its conjugate. Either

is said to be zero if a=b=0. Two complex numbers a-+bi and ct+dz
are said to be equal if and only if a=c and b=d. In particular, a+bi=0

1 Complex numbers are essentially couples of real numbers. For a treatment from
this standpoint and a treatment based upon vectors, see the author’s Elementary Theory

of Equations, p. 21, p. 18.
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if and only if a=b=0. If b0, a+b¢ is said to be 7maginary. In partic-
ular, b is called a pure imaginary.
Addition of complex numbers is defined by
(a+bi)+(c+di) =(a+0)+(b+d)r. .

The inverse operation to addition is ¢alled subtraction, and consists in:
finding a complex number z such that \ '
(c4+-di) +z=atbi.

In notation and value, zis

(a+b) — (c+di) = (a—c)+(b—d)i.

Multiplication is defined by

(a+bi) (c+di) =ac—bd+(ad+be)i,
and hence is performed as in formal algebra with a subsequent reduction
by means of = —1. For example, ~

(a+bt) (a—bi) =a?—b¥2=a’4-b%

Division is defined as the operation which is inverse to multiplication,
ahd consists in finding a complex number ¢ such that (a+bi)g=e+fe.
Multiplying each member by a—bi, we find that ¢ is, in notation and
value, )

e+fi_(e+ft) (a—b) =ae+bf+ af—bei

o+ a2+ a?4b2 ' a?+b2
Since a2-+h=0 implies a=b=0 when a and b are real, we conclude that
division except hy zero is possible and unique.

EXERCISES

Express as complex numbers

. vVie o 2. Va 3. (Vos+V -2 V16 4 -1

_ 3+v .5 345 a+bi
5. 84+2V3. vl T 8 —.

. - .
9. Prove that the sum of two conjugate complex numbers is real and that their
difference is a pure imaginary.

10. Prove that the conjugate of the sum of two vomplex numbers is equal to the

sum of their conjugates. Does the result hold true if each word sum is replaced by the

word difference?
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11. Prove that the conjugate of the product (or quotient) of two complex numbots ‘
is equal to the product (or guotient) of their conjugates.

12. Prove that, if the product of two complex numbers is zero, at least one cf them
is zero.

13. Find two pairs of real numbers z, y for which

(z4yi)t= —T424i,

As in Ex. 13, express as complex numbers the square roots of

14. —11460 1. 15. 5—12. 16. 4ed4-(207==2d2)1.
3. Cube Roets of Unity. Any complex number z whose cube is equal
to umty is ealled a cube root of unity. Since.
z7~1=(z—1) (#+z+1),
the roots of x®=1 are 1 and the two numbers'z for which
2+z+1=0, (+§?=-} =+i=x}V3i
Hence there are three cube roots of unity, viz.,
1, w=-3+4V3i, o'=—}=3V3i
In view of the origin of w, we have the important relations
@ tetl=0, o=l
Since ww’'=1 and «?=1, it follows that w’=w?, w=w". _

4. Geometrical Representation of Complex Numbers. Using rect-
angular axes of coordinates, X and OY, we represent the complex number
a-+b¢ by the point A having the codrdinates a, b (Fig. 1).

The positive number r=vaFb? giving
the length of OA is called the modulus (or
absolute value) of a4bi. The angle §=X0A4,
measured oounter-clockwise from 0X to OA4,
is called the amplitude (or drgument) of a~+bi.
' Thus ces 8=a/r, sin =2d/r, whence

) a-+-bi=7r(cos 64 sin @). Fia. 1
The second member is called the trigonometric form of a-+bi.

For the amplitude we may select, instead of 8, any of the angles A-:360°,
6+720°, etc.
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Two complex numbers are equal if and only if their moduli are equal

. and an amplitude of the one is equal to an amplitude of the other.

For example, the cube roots of unity are 1 and
w= “3"-*'-2-‘\/3 T
=cos 120°+1 sin 120°,

we=—§-3V3i

= cos 240°+i sin 240°,

and are represented by the points marked 1, u, «?
at the vertices of an equilateral triangle inscribed
in a circle of radius unity and center at the origin
O (Fig. 2). The indicated amplitudes of w and w?
are 120° and 240° respectively, while the modulus
of each is 1.

The modulus of —3 is 3 and its amplitude is 180° or 180° plus or minus the product
of 360° by any positive whole number.

Fia. 2

B. Product of Complex Numbers. By actual multiplication,
[r(cos 841 sin 8)] [r'(cos a+-7 sin a)]
=7r'{(cos 6 cos a—sin 6 sin &) +7(sin ¢ cos a+cos 8 sin a)]
=rr'[cos (8+a)+isin (f+4a)], by trigonometry.

Hence the modulus of the product of two complex numbers is equal to the
product of their moduli, while the amplitude of the product is equal to the
sum of their ampuitudes.

For example, the square of w=eos 120°+i sin 120° has the modulus 1 and the ampli-
tude 120°+120° and hence is w?=cos 240°-4 sin 240°. Again, the product of w and w?

has the modulus 1 and the amplitude 120°+-240° and hence is cos 360°4-¢ 8in 360°,
which reduces to 1. This agrees with the known fact that w¥=1

Taking r=\r' =1 in the above relation, we obtain the useful formula
(2) (cos 8+ sin 8) (cos a-+7.sin a) = cos (6+a)+1 sin (0+4a).
6. Quotient of Complex Numbers. Taking a=§—6 in (2) and divid-

ing the members of the resulting equation by cos 841 gin 8, we get

cosptisinf_ (8—6)+1 sin (8—6).

cos 8-+1 sin 8
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Hence the amplitude of the quotieni of R(cos B+1 sin 8) by r(cos 841 sin 8)
s equal to the difference B—0 of their amplitudes, while the modulus of the
guotient vs equal to the quotient R/r of their moduli.

The case 8=0 gives the useful formula

1

—_— =08 §—1 sin 8.
cos §-+1sin 6

7. De Moivre’s Theorem. If n is any positive whole number,
3) (cos 8+1 sin )" = cos nd-+1 sin né.

This relation i1s evidently true when n=1, and when n=2 it follows
from formula (2) with a=6. To proceed by mathematical induction,
suppose that our relation has been established for the values 1,2,...,m
of n. We gan then prove that it holds also for the next value m+1 of n.
For, by hypothesis, we have

(cos 8-+ sin )™ = cos mb-+-7 sin mé.

Multiply each member by cos 6+ sin 8, and for the product on the nght
substitute its value from (2) with a=m#. Thus

(cos 841 sin 8)™*'=(cos 8+ sin ) (cos mb-+1 sin mé),
= cos (§+mb)~+ sin (6+m4), '
which proves (3) when n=m+1. Hence the induction is complete.
Examples are furnished by the results at the end of § 5:

{oos 120°+1. sin 120°)2=cos8 240° ¢ sin 240°,
(eos 120° -4 sin 120°)’—QOS 360°+1 sin 360°.

8. Cube Roots. To find the cube roots of a complex number, we first
express the number in its trigonometric form. For example,

4V 2+ 4V 2 i =8(cos 45°+1 sin 45°).
If it has a cube root which is a complex number, the latter is expressible
in the trigonometric form
4) ) r(cos 0+-< &in 6).
‘'The cube of the latter, which is found by means of (3), must be equal
to the proposed number, so that

r3(cos 36+ gin 36) =8(cos 45°-+1 sin 45°).
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The moduli ¥ and 8 must be equal, so that the positive real number r
is equal to 2. Furthermore, 36 and 45° have equal cosines and equal
sines, and hence differ by an integral mulitple of 360°. Hence 36 =45+
k-360°, or 6=15°+k-120°, where k is an integer.! - Substituting this
value of 8 and the value 2 of r in (4), we get the desired cube roots. The
values 0, 1, 2 of k give the distinct results

R1=2(cos 15°+1 sin 15°), Ro=2(cos 135°+¢ sin 135°),
R3a=2(cos 255°+1 sin 255°).

Each new integral value of k leads to a result which is equal to Ri,
R2 or Rs. In faet, from k=3 we obtain R;, from k=4 we obtain Ry, from
k=5 we obtain Rs, from k=6 we obtain R; again, and so on periodically..

EXBRCISES

1. Verify that Ry=wR,, Rs=w?R:. Verify that R is a cube root of 8 (cos 45°+
isin 45°) by cubing R, and applying Pe Moivre's theorem. Why are the new expressions
for R: and R: evidently also cube roots?

2. Find the three cube roots of —27; those of —¢; those of w.

3. Find the two square roots of 4; those of —i; those of .

4. Prove that the numbers cos 8-1-4 sin 8 and no others are represented by points
on the circle of radius unity whose eenter is the origin.

5. If a+bi and c-di are represented by the points A and C in Fig. 3, prove that
their surh is reprezented by the fourth vertex S of the parallelogram two of whose sides
are OA and OC. Hence show that the modulus ef the sum of two complex numbers
is equal to or less than the sum of their moduli, and is equal to or greater than the dif-
ference of their moduli.

Y

X ¢
Fie. 3 Fia. 4

1 Here, as elsewhere when the contrary is not specified, zero and negative as well
as positive whole numbers are included under the term *‘integer.”
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6 Let r and »’ be the mnduli and 8 and o the amplitudes of two complex numbers
represented by the points A and € in Fig. 4. Let U be the point on the 2-axis one
unit to the right of the origin 0. Construct triangle OCP similar to triangie OU A and
similarly placed, so that corresponding sides are OC and OU, CP and UA, OP and OA,
while the vertices O, C, P are in the same order (clockwise or counter-clackwise) as
the corresponding vertices O, U, A. Prove that P represents the product (§ 5) of the
{omplex numbers represented by A and C,

7 If a+bi and e-+fi are represented by the points A and § in Fig. 3, prove that
the oomplex number obtained by subtracting a+bi from e-+fi i represented by the point
C. Hence show that the absolute value of the difference of two complex numbers is
equal to or less than the sum of their absolute values, and is equal to or greater than
the difference of their absalute values.

8. By modifying Ex. 6, show how to conatruet geometrically the quotient of we
complex numbers,

9. nth Roots. = As illustrated in § 8, it is evident that the nth roots
of any complex number p(cos A+7sin A) are the products of the nth
roots of eos A+isin A by the positive real nth root of the positive real
number p (which may be found by logarithms).

Let an nth root of cos A+7sin A be of the form

4) r{cos ¢4 sin 8).
Tben, by De Moivre’s theorem,
r*(cos nd+1 sin n8) =cos A7 sin 4.

The moduli 7* and 1 must be equal, so that the positive real number r
is equa! to 1. Since n8 and A have equal sines and equal cosines, they
differ by an integral multiple of 360°. Hence nf=A-+1%-360° where k
is an integer. Substituting the resulting value of 8 and the value 1 of »

in (4), we get

. A+k-360%\ , . . [A-+k-360°
@ o (AHER) wiin (FELEE).

For each integral value of k, (5) is an answer since its nth power reduees
to gos A+isin A by DeMoivre’s theorem. Next, the value n of k gives
the same answer as the value 0 of k; the value n+1 of k gives the same
answer as the value 1 of k; andin general the value n+m of k gives the
same answer as the value m of k. Hence we may restrict attention to
the values 0, 1,...,n—1 of k. Finally, the answers (5) given by these
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values 0, 1, ..., n—1 of k are:all distinct, since they are representéd by
points whose distance from the origin is the modulus 1 and whose ampli-
tudes are .

A A 360° A | 2-360° +(n—1)360°

—_— i
n’ at n' n ' n

so that these n points are equally spaced points on a circle of radius unity.
Special cases are noted at the end of §10. Hence any complex number
different from zero has exactly n distinct complex nih roets.

10. Roots of Unity. The trigonometric form of 1 is cosO°+zsm0°
Hence by § 9 with A =0, the n distinct nth roots of unity are

© o0s 2% i sin 27 (1=0,1,...,n-1),

where now the angles are measured in radians (an a,ngle.of 180 degi-ees
being equal to = radians, where ==3.1416, approximately). For k=0,
{6) reduces to 1, which is an evident nth root of unity. For k=1, (6) is

2, . . 2m
)] R=cos W_H sin -~

By De Moivre’s theorem, the general number (6) is equal to the
kth power of R. Hence the n distinct nth roots of unity are

®) R, R% B3, ..., R*' Rr=

As a special case of the final remark in §9, the n complex numbers
(6), and therefore the numbers (8), are represented geometrically by the
vertices of a regular polygon of n sides inscribed in the circle of radius
unity and center at the origin with one vertex on the positive z-axis.

For n=3, the numbers (8) are «, »? 1, which are repre-
gented in Fig. 2 by the vertices of an equilateral triangle.

For n=4, R=cos x/2-+isin x/2=3. The four fourth roots
of unity (8) are i, 1?=—1, = —4, ¢¢=1, which are repre-
sented by the vertices of a squsre inscribed in a circle of
radius unity and center at the origin O (Fig, §).
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EXERCISES

1. Simplify the trigonometric forms (6) of the four fourth roots of unity. Check
the result by factoring z*—1.

2. For n=6, show that R= —w?. The sixth roots of unity are the three cube roots
-of unity and their negatives. Check by factoring z6—1.

3. From the point representing a+bi, how do you obtain that representing — (a4 b%)?
Hence derive from Fig. 2 and Ex. 2 the points representing the six sixth roots of unity.
QObtain this result another way.

4. Find the five fifth roots of —1.

%. Obtain the trigonometric forms of the nine ninth roots of unity. Which of
them are cube roots of unity?

6. Whick powers of a ninth root (7) of unity are cube roots of unity?

11. Primitive nth Roots of Unity. An nth root of unity is called
primitive if n is the smallest positive integral exponent of a power of it
that is equal to unity. Thus p is a primitive nth root of unity if and only
if p"=1 and p'>1 for all positive integers I<n.

Since only the last one of the numbers (&) is equal to unity, the number
R, defined by (7), is a primitive nth root of unity. We have shown that
the powers (8) of R give all of the nth roots of unity. Which of these
powers of R are primitive nth roots of unity?

Yor n=4, the powers (8) of R=1 were seen to be
$1=q, 2= —1 *= —1, t4=1,

The fist and third are primitive fourth roots of unity, and their exponents 1 and 3
are relatively prime to 4, i.., each has no divisor >1 in common with 4. But the
second and fourth are not prumtxve fourth roots of unity (since the square of —1 and the
first power of 1 are equal to unity), and their exponents 2 and 4 have the divisor 2 in
common with n=4. These facts illustrate and prove the next theorem for the case
n=4,

TuroreM. The primitive nth roots of unity are those of the humbers
(8) whose exponents are relatively prime to n.

Proof. If k and n have a common divisor d (d>1), R*is not & primitive
rith root of unity, since

R (Rt)%= (Ru)':'___

and the exponent n/d is a positive integer less than n.
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‘But if k and 2 are relatively prime, i.c., have no common divisor>1,
R* is a primitive nth root of unity. To prove this, we must show that
{(R®*s#1 if 1 is a positive integer<n. By De Moivre’s theorem,

; RH— cos g%l_r_*_ . 2klzr_‘

(2

[f this were equal to unity, 2klr/n would be a multiple of 2x, and hence
kl a multiple of n. Since k is relatively prime to n, the second factor 1
would be a multiple of n, whereas 0 < I < n. .

EXERCISES

1. Show that the primitive cube roots of unity are w and 2

2. For R given by (7), prove that the primitive nth roots of unity are () for n=8,
R, Bs; (#) for n=8, R, B3 RS R"; (iir) for n=12, R, k% R, R1.

3. When 7 i8 a prime, prove that any nth root of unity, other than 1, is pnmmve

4, Let R be a primitive nth root (7) of unity, where n is a product of two different
primes p and ¢. Show that R, . . ., R™are primitive with the exception of R?, R?®, . .,
R?, whose gth powers are unity, and RY, R¥, ..., R?, whose pth powers are unity.
These two sets of exceptions have only R?? in common. Hence there are. exactly
pg—p—q+1 primitive nth-roots of unity.

5 Find the number of primitive nth roots of unity if n is a square of a prime p.

6. Extend Ex. 4 to the case in which = is a product of three distinct primes.

7. If R is a primitive 15th root (7) of unity, verify that B3, R¢, R®, R!? are the primi-
tive fifth roots of unity, and R5 and R are the primitive cube roots of unity. Show
that their eight producte by pairs give all the primitive 15th roots of unity.

8. If p is any primitive nth root of unity, prove that e, p% ..., e are distinet and
give all the nth roots of unity. Of these show that o* is a pnm1twe nth root of unity
if and only if k is relatively prime to 7. ~

9, Show that the six primitive 18th roots of unity are the negatives of the primi-
tive ninth roots of unity.



CHAPTER IIV
ELeMENTARY THEOREMS ON THE RooTs oF AN EquaTtion

12. Quadratic Equation. If q, b, ¢ are given numbers, a0,
1 az?+bz4c=0 (a=0)
is called a quadratic equalion or equation of the second degree. The
reader is fami]ial with the following method of solution by * completing
the square.” Multiply the terms of the equation by 4a, and transpose -

the constant term; then
4a2x2+4abx = —4ac.

Adding ®? to complete the square, we get
(20z+b)2=A, - A=b%—4ac,

-—b+\/— . s-b—\/E
2 3a

By addition and multxphca,tmn, we find that

(2) Ty ™=

(3) z1+1 =%é, L1y = g.

Hence for all values of the variable z, .

4) a(z—z1) (x—2x2) = ax"’-—a(x1+x2)x+a:c1zzaax’+bz+c,

" the sxgn = being used instead of = since these functions of z are zdenncally
equal, i.e., the coefficients of like powers of z are the same. We speak

“of a(z— xl) (z—z2) as the factored form of the quadratic function az?+bz+¢,

and of 2—z1 and z—2x2 as its linear factors.
In (4) we assign to z the values z; and 22 in turn, and see that

O=ax2+bri+c, O=axr®+brat-c.
Hence the values (2) are actually the roots of equation (1).
'~ We call A=b?—4ac the discriminant of the funetion axt+bxr+e or
of the corresponding equation (1). If A=0, the roots (2) are evidently

equal, so that, by (4), ax?4-bz+c is the square of Va(z—z;), and con
11



