WILEY PROFESSIONAL COMPUTING

e
~ :-'-'ljf"’-‘-‘-._

ADVANCED

WINDOWS™

PROGRAMMING




Advanced Windows’
Programming

Martin Heller

John Wiley & Sons, Inc.

New York Chichester Brisbane Toronto Singapore




In recognition of the importance of preserving what
has been written, it is a policy of John Wiley & Sons,
Inc., to have books of enduring value published in the
United States printed on acid-free paper, and we exert
our best efforts to that end.

Copyright © 1992 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in
Canada.

Reproduction or translation of any part of this

work beyond that permitted by Section 107 or 108
of the 1976 United States Copyright Act without

the permission of the copyright owner is unlawful.
Requests for permission or further information
should be addressed to the Permissions Department,
John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Heller, Martin, 1951—
Advanced Windows Programming / Martin Heller.
p. cim.
Includes bibliographical references and index.
ISBN 0-471-54711-5
ISBN 0-471-55172-4 (book/disk set)
1. Windows (Computer programs) 2. Microsoft
Windows (Computer program) I. Title
QA76.76.W56H45 1992
005.4'3dc20 91-35881
CIP
Printed in the United States of America
1098765432

Printed and bound by Malloy Lithographing, Inc..



About the Author

Martin Heller develops software, writes, and consults in Andover, MA. You can
contact him on BIX and MCI Mail as mheller, on CompuServe as 74000, 2447,
and by mail care of John Wiley & Sons.

Martinis a contributing editor and regular columnist forWindows Magazine and
the author of half a dozen PC software packages. He has been programming for
Windows since early in the Windows 1.0 alpha test period. He has baccalaureate
degrees in physics and music from Haverford College as well as Sc.M. and Ph.D.
degrees in experimental high-energy physics from Brown University.

Dr. Heller has worked as an accelerator physicist, an energy systems analyst, a
computer systems architect, a company division manager, and a consultant.
Throughout his career he has used computers as a means to an end, much as a
cabinet maker uses hand and power tools.

Martin wrote his first program for a drum-based computer in machine language
in the early 1960s. No, not assembly language, machine language. The following
year he taught himself Fortran 11, and wrote mathematical programs in that language
throughout high school.

In graduate school Martin wrote hundreds of programs in MACRO-9 assembler
for a DEC PDP-9 computer, and hundreds more Fortran IV, APL, and PL/1 programs
for an IBM 360/67. For his Ph.D. thesis he analyzed 500,000 frames of bubble
chamber film taken at Argonne National Laboratory and helped take other data at
Fermi National Accelerator Laboratory.

AtNew England Nuclear Corporation (currently a DuPont subsidiary) Dr. Heller
developed an automatic computer data-acquisition and control system for an
isotope-production cyclotron using Fortran IV+ and MACRO-11 on a PDP-11, with
additional embedded 6802-based controllers. When the company acquired a VAX,
Martin wrote one of the earliest smart terminal programs, in assembly language for
the PDP-11 running RSX-11M.

At Physical Sciences Inc. (PSI) Martin developed a steady-state model of an
experimental fuel cell power plant (under contract to the U.S. Department of
Energy) in BASIC on a TRS-80 Model 3, and designed more advanced plants in
BASIC on an early IBM PC. He developed a DOT-compliant crash sled data analysis
program and a brake-testing data-acquisition, control, and analysis system in
compiled BASIC for General Motors; he also developed the suite of programs that
allowed General Motors to successfully defend itself against a government action
over X-car braking systems.

Martin designed and developed MetalSelector, a materials selection and mate-



vi About the Author

rials properties database program, under contract to the American Society for Metals
(currently called ASM International), still in compiled BASIC. He designed EnPlot
for the Society's graphing needs, intending the program for Windows 1.0, and put
together a team of programmers to write it in C. When Windows 1.0 started slip-
ping its schedule. Dr. Heller and his team implemented EnPlot for DOS instead of
Windows.

Martin responded to the ongoing needs of the materials properties community
by designing and implementing MetSel2 (at PSD and later MatDB, in C for DOS, and
EnPlot 2.0 for Windows (in both cases as an independent consultant). EnPlot is
currently at revision 3.0 (and counting), and runs under Windows 3.0 and above.

While still at PSI, Martin designed two statistical subroutine libraries in Fortran
for John Wiley & Sons. Stat1ib. tsf wasatime-series and forecasting library. and
Statlib.gl wasadevice-independent graphing library builton the GKS graphics
standard. Both packages are now out of print.

As a consultant, Martin has worked with several companies to develop, design,
and/or debug Windows applications. His latest solely developed program is Room
Planner, a meeting and conference layout system for the hospitality industry.




Preface

Advanced Windows Programming was written to show the Windows developer
the essentials of writing realWindows programs. Up until now the only ways to find
out this information have been to program Windows for a couple of years, to look
over the shoulders of experienced Windows developers, and to ask questions in a
computer conference; the best such have been BIX (the Byte Information Ex-
change), CompuServe and GEnie. The material hasn’t even been covered in course
work, except at Microsoft University and one specialized school in—of all places—
Iceland.

While the title says Advanced, this book will be of equal benefit to beginning
Windows programmers. A good set of prerequisites would be:

e A strong working knowledge of the C programming language, with a
firm understanding of pointers and structures.

¢ A good grasp of Intel segmented memory architecture.

» A more than passing acquaintance with Microsoft C, including the near
and far keyword extensions.

e Some familiarity with the Microsoft Windows application program inter-
face and message-passing model. This can be achieved by reading
through the Microsoft Windows SDK (Software Development Kit) Guide
to Programming manual, and Charles Petzold's Programming Windows,
Second Edition (Microsoft Press, 1990).

To compile and run the examples in the book or companion disks as presented,
you'll need Microsoft C V6.0 or later, the Microsoft Windows SDK V3.0 or later, and
Microsoft Windows V3.0 or later. If you don’t have Microsoft C, you can still use the
programs from this book: Appendix 2 explains how to adapt the code for Zortech
C++, Appendix 3 explains how to do the same for Borland C++, Appendix 4 covers
the use of Watcom C, and Appendix 5 covers Quick C for Windows. You'll need a
PC capable of running all of this, of course; a minimum configuration would be an
80286-based PC with 640KB of memory, a hard disk, an EGA display, and a mouse.

Note that the companion disks have contents that don't appear in the book, and
vice versa. This is strictly a matter of space and practicality. Some material is best
presented as itis here, in print; other material is best given in executable form. If you
bought the book without the diskettes, you can order them using the attached card.
Some, but not all of the contents of the companion disks are also available on BIX
for downloading.



x Preface

Once you've got the prerequisites under your belt—C and a little exposure to
Windows at the introductory level—Advanced Windows Programming can help
you get over the rather formidable mental barrier to writing Windows programs.
Theres a bigdifference between writing a 500-line program in small model that does
nothing but draw monochrome pictures on the screen, and a 5,000-line multiple-
module program in mixed model (medium model plus global allocations) that deals
with color, palette management, printers, fonts, the clipboard, and dynamic data
exchange. Don't feel that you have to know every little thing about Windows before
you start: the value of this kind of book is that you'll pick it up and gain fluency as
you go. as long as you have enough background to follow the exposition.

In Advanced Windows Programming 1 cover the process of developing real
Windows programs, as opposed to toy examples. After some introductory matter,
the book revolves around a single major application to display device-independent
bitmaps, and a number of smaller test fixtures to help us develop our modules.

We start, innocuously enough, with a look at the SHOWDIB example program
from the Microsoft Windows Software Development Kit (SDK). We add capabilities:
more file formats, some image processing algorithms.

Then we add editing capabilities using the Windows clipboard, demonstrating
useful functions like dragging regions, handling global memory larger than 64K,
and implementing undo functions. We continue by investigating DDE and OLE
client. server, and remote execution capabilities. Along the way, we deal with the
problems unique to large-sized Windows programs, such as memory management
and modularization, and problems that occur only when two Windows programs
interact.

We take an intermission from our bitmap display program—which by now has
grown into something of an image-processing program—and discuss different
ways to debug Windows programs. We'll emphasize techniques for solving actual
problems, in some detail, and we’ll deal with the lovely problems that come up
when the debugger makes the bug go away, or the debugger kills the program
before the bug we're looking for can express itself.

We'll digress further, and talk about edit controls. We'll demonstrate how to
customize edit controls by responding to various messagesina dialog box, and how
to customize further by subclassing. When we've taken this as far as we think
reasonable, we'll reimplement the edit control ourselves and enhance it to handle
multiple fonts, point sizes, and text attributes.

Finally, we'll add our custom edit control to the bitmap display program and use
it for adding titles to animage. Alittle tuning, and we—authorand reader—will have
built a fairly interesting application that is useful in and of itself, and open to further
enhancements by the reader. Just as icing on the cake, we'll go on to talk about how




Preface xi

we'd port this application—or less ambitious Windows applications—to Presenta-
tion Manager, X-Windows, DOS, and the Macintosh.

1 couldn’t have written this book in a vacuum. I am deeply indebted to the many
Windows designers, developers, technical writers, and support people at Microsoft;
to Charles Petzold. whose fine book provides a solid foundation on which mine
builds: to Diane Cerra, Terri Hudson, and Katherine Schowalter at Wiley, who
prodded me to turn a vague idea into a substantial volume; and to Claire Stone, who
designed the book's layout and helped me over the hurdles of desktop typesetting.
] thank my beta readers: John Butler, Michael Geary, Lee Hasiuk, Kyle Marsh, Jean-
Marc Matteini, Barry Nance, Bill Neuenschwander, Dan Rubin, John Skiver, and Carl
Sturmer. as well as Wiley's two anonymous reviewers.

[ also thank the many programmers on BIX who contributed examples, made
suggestions, or helped to test and debug my software, including Marc Adler, Mike
Geary, David Jones, Barry Nance, Dan Rubin, Bill van Ryper, Jay Slupesky, Anders
Thun. and Bert Tyler. I thank Dana Hudes for contributing some fine photographs,
and Steve Rogers of Kodak for scanning the images. And finally I thank my wife,
Claudia

hecause.



Contents

Preface

Chapter 1: Introduction

Chapter 2: Some Fundamentals .
Chapter 3: Displaying and Printing DIBs
Chapter 4: Exploiting the Clipboard
Chapter 5: Exploiting DDE and OLE
Chapter 6: Debugging Windows Programs
Chapter 7: Custom Edit Controls
Chapter 8: A Rich Text Edit Control
Chapter 9: Titling a Bitmap

Chapter 10: Porting .

Chapter 11: A Concluding Unscientific Postscript .

Appendix 1: Exercises for the Student
Appendix 2: Using Zortech C++.
Appendix 3: Using Borland C++.
Appendix 4: Using Watcom C
Appendix 5: Using Quick C

Index .

37

47
169
193
229
265
283
313
319
329
335
339
341
343
345
347



CHAPTEHR

In which we present a general
introduction to the more advanced
Windows programming concepts,
such as interprocess communica-
tion, memory management, sub-

classing, and superclassing.

Introduction

In the beginning, C programmers write (or copy) hello.c, for which the
specification is to print the words “hello, world”. The ordinary C version of this,
which works perfectly well in Unix, DOS, OS/2, and any number of other text-
based operating systems, is simply:
#include <stdio.h>

main()
{

}

printf(“hello,world\n®);

Kernighan and Ritchie tell us that getting this program entered, compiled,
and run is the “big hurdle” to getting started as a C programmer; “everything else
is comparatively easy.”

The equivalent “hello” program for Microsoft Windows (found in Chapter
1 of Charles Petzold's fine introductory book, Programming Windows) amounts
to three pages of text—some 80 lines of code—in three files: hellowin.c (the
C language source code), hellowin.def (the module definition file), and
hellowin.mak (the “make” file). Getting “hello” for Windows running is
another big hurdle—but not so big a hurdle as understanding everything that
goes on to make it run. An even bigger hurdle for beginning Windows

1



2 Introduction

programmers is to venture beyond the manuals; the barrier here is as formidable

as was the dreaded map designation terra incognitato fifteenth-century sailors.
Consider this book your Baedeker, your guide to unknown lands, written

by one who has explored their blackest depths and returned to tell the tale.

Real-World Programs versus Toys

Nobody ever said hello.c was useful—other than as a learning tool. Neither
is the “Hello, Windows” program. But there is more to a Windows program
than there is to hello.c; Petzold’s hellowin, the Windows SDK generic
program and other readily available small examples do valuable service as
templates. You'll never have to reinvent the obligatory parts of a Windows
program: just copy an example, change the names, and start adding func-
tionality.

still, the programs you'll find in the Windows SDK and in other Windows
programming books are mostly short, easily digestible examples—which also
makes them toy programs. They sometimes do useful things, such as enumerate
your fonts or take a window snapshot, but they don’t generally push any of the
size limits on Windows programs.

On the other hand, real-world Windows programs often do push the limits.
What do I mean by “real-world”? Why, something genuinely useful. Word for
Windows, the word processor I'm using to write this book, is a good example.
Its executable, winword.exe, is almost 900KB of code and resources. Its
dynamic link libraries add up to another 900KB. It has 500KB of data files, 350KB
of document templates, 250KB of import and export filters, and a 400KB help
file. It isn’t big just to be big—it is big because it does a lot of different things.

There is an ethic among some programmers and Sixties counterculture
types: small is beautiful. We must emend that specifically for computer
software: given two programs that do the same thing at the same speed, we
prefer the one that uses the fewest system resources. Small programs that don'’t
do much or take a long time to run don’t qualify as beautiful. But small programs
that do one or two things elegantly may qualify as good hacks. There’s a
satisfaction in writing a good hack that you don’t often get from writing a big
potpourri of a program; but there are techniques needed for big programs you
just won't find in little ones.

Back to Word for Windows. It's got several megabytes of code. Normally,
the sum of a program’s static data, stack, and local heap can’t exceed 64KB. Can
you imagine that Word for Windows would be possible if there weren't a way
around that restriction?

A big program can't blithely assume that any global memory blocks it needs
will be allocated successfully—the sheer size of the program almost guarantees



Memory Management Issues 3

that it will have to deal with low memory situations. Word for Windows can’t
require that every font available for your printer also be available for your
screen: if it did, Microsoft would be swamped with returns of the product from
people withoutenough disk space to build all those screen fonts. It can’t assume
that every file it reads will be in the format it expects to read, or it would crash
every time it didan import. It can’tarbitrarily limit itself to a “reasonable” number
of fonts—the dozen fonts that might be reasonable at a secretary’s workstation
would hardly make a dent in the hundreds of fonts needed by a desktop
publishing shop.

It has to deal, instead, with the real world—or as real a world as exists on
personal computers. And the ways Windows programs deal with these real-
world issues and problems is the major subject of this book.

Other Windows books concentrate on short programs because they're
easier to understand than long programs. And, perhaps, because they're easier
to write than long programs. We don't have that luxury: to show the problems
of size and their solutions, we need to work on a big program. But for
comprehensibility, we'll explain fragments of code in small chunks; and for
reliability, we'll test them in small chunks with little test fixtures. Not all of our
test programs will necessarily be Windows programs: when possible, we'll test
our functions in a more controlled environment (plain DOS or 0S/2) before
bringing them into the multitasking mayhem of Windows.

I learned some of the techniques covered in this book the hard way: 1
worked them out for myself in the course of developing Windows programs.
Other techniques were supplied by Microsoft, and still others were shared with
me by other Windows developers. I'll do my best to give credit where credit is
due—but I hope that the originators of some of the tricks that I present will
forgive me, since their names have been lost as their hacks have been passed
orally from programmer to programmer.

A small admission: while I advocate carefully testing functions and program
fragments outside of the program they will eventually be part of, I don't always
practice what I preach. Lots of times, bending to time constraints, I'll write the
code once in its final resting place, quickly check that it works as expected, and
go on the next pressing matter. [usually getaway with such shortcuts; but, when
they backfire, the time spent to isolate and repair the problem can be costly.
You'll have to decide for yourself how much insurance (in the form of bench
testing) you want to buy, and how much risk you can afford to take.

Memory Management Issues

Microsoft Windows isn’t really a single environment. Depending on how you
want to count, it is either three or five different environments in version 3.0. That



4 Introduction

count goes down to two different memory environments in Windows 3.1, at
least under DOS. (The NT Windows environment is so different that we won't
try to cover it here.)

Windows Memory Modes

To begin with, Windows 3.0 can run in real, standard, and enhanced modes.
Windows 3.1 drops support for real mode, and runs only in standard and
enhanced modes.

Real mode in Windows 3.0 is similar to Windows 2, and can use three
memory modes itself: no EMS, small-frame EMS, and large-frame EMS. EMS
stands for Expanded Memory Specification; it is also called LIM (for Lotus-Intel-
Microsoft, the companies who specified the standard) or banked memory. You
might want to check to see what memory mode your copy of Windows is using:
to do so, pull down the About box from the Windows Program Manager’s
Help menu (Figures 1.1 and 1.2).

With no EMS in real mode—the basic memory mode—Windows has very
little memory available for applications; it is dead certain that you won't be able
to run two big applications simultaneously, and that an application big enough
to be useful will constantly be discarding and loading code segments. If you
want to stress-test your application to see if you've done your segmentation
well, use this mode. You can force real mode without EMS by starting Windows
3.0 with the command line:

WIN /R /N

On a machine with more than 640KB of memory, HIMEM. 8YS (which
comes with Windows) makes an extra 64KB of memory available to Windows

Program Manager

Help

Contents
Search for Help on...

%
Help
a About Program Manager...

Read Print Clipboard ATM Tutone TS
Me Manager Control > ‘CU”WkSL;'\P

How to Use Help
Windows Tutorial

per Authw

ol

Author Apps

ToolkiiDesigner ___ S e sy
el el el s o e

Bridge Lang- Excel Samples Multi-  Don't Micro Zortech Micro SDK  MDK
uages 3.0 Scope stat gratx C++V3 Phone Tools

I 20 __

Aldus DOS BORLANIGameAccessorMicrosofiEditors  DIBs — Misc RealizeToolBook
Apps  C#+ QC/MWin 15

Figure 1.1. Pulling down the Program Manager Help Menu



Memory Management Issues 5

About Program Manager

Microsoft Windows Program Manager
Version 3.1.056
Copyright © 1985-1992 Microsoft Corp.

This product is licensed to:

Martin Heller

Martin Heller and Co.

Serial number: 00-96-0310-200000KKX

386 Enhanced Mode
Memory: 14.218 KB Free
System Resources: 82% Free

Figure 1.2. Memory display from Program Manager

through the use of the infamous A20 memory-addressing control line. (A20
refers to the pinout designation on the chip.) Basically, enabling A20 lets
Windows use a quirk in the 80286 addressing scheme to reach the “High
Memory Area,” which resides just above the IMB mark. Because of the way PCs
are designed, only 640KB of RAM is mapped below the video adapters and ROM
areas; additional memory is mapped above the 1MB line. To really stress-test
your application for low memory situations, disable HIMEM. SYS temporarily
and force Windows into basic mode—you’re just about guaranteed to see
segment motion, segment discarding, and segment loading. HIMEM. SYS is
normally installed by the Windows 3 setup program; to disable it, edit your
CONFIG. SYS file and reboot.

Small-frame EMS mode improves things somewhat for a single application:
much of its code and data can be banked, or put into expanded memory. To get
expanded memory in an 80286-based machine, you need a special expanded
memory board (such as an Intel AboveBoard) that has bank-switching hard-
ware. On an 80386- or 80486-based machine, you can emulate expanded
memory using EMM386.SYS, which comes with Windows. You'll find in-
structions for installing EMM386 in your Windows manual. You can also emulate
expanded memory with third-party memory managers like 386-to-the-Max and
QEMM.

You'll need to test your application in both EMS modes to ensure that it
works correctly with bank-switching. To force small-frame EMS mode, start
Windows 3.0 with the line:

WIN /R /E:999

Large-frame EMS mode gives each application its own banked memory, but
leaves less low memory for each application than small-frame mode. The mix
of low and banked memory is adjustable: vary the /E:xxx parameter on the



6 Introduction

Windows command line to see the effect. Running Windows with the /R switch
and without the /E switch will generally get Windows into large-frame EMS
mode. Many commercial Windows applications will either fail to start or crash
during operation in this mode, since most dynamic link libraries can’t be banked
and the low memory gets used up quickly. Unless you've marked your appli-
cation for protected mode only (using the /t switchto RC) you need to test your
own applications in large-frame mode to find out where the bank line needs to
be set: you'll undoubtedly hear from customers who can’t run your application
because they re running Windows in large-frame EMS mode, and you'll need to
know what to tell them.

Windows 3.0 standard mode uses the protected mode of the 80286 in much
the same manner as does OS/2 1.x. Segment motion in this mode is handled by
updating the segment descriptor table; the CPU uses the segment descriptor
table to map segment handles to actual memory addresses. Handling the
memory mapping in hardware improves the speed of Windows; even more
speed improvement comes from the larger available address space. All the
memory in standard mode is the same kind—you don’t have any such thing as
banked memory to worry about. The net result is that programs running in
standard mode do a lot less discarding of segments than programs running in
any of the real modes; the reduced disk activity and the reduced segment
motion overhead combine to make standard mode a faster environment for
Windows programs.

Standard mode allows one DOS session to run as a full-screen foreground
task, but suspends the DOS session when it is in the background. This is fine on
a 286, but doesn't use the full capabilities of a 386. Windows 3 enhanced mode,
on the other hand, uses the advanced memory mapping modes of the 80386 to
provide demand paged virtual memory, multiple DOS sessions, and some
multitasking of sessions. If you've got a 386 box and enough memory (*enough”
being theoretically more than 2 MB, or realistically at least 4 MB of RAM),
enhanced mode will allow you to use disk as additional “RAM,” run several DOS
sessions at the same time you are running several Windows programs—and
even run windowed DOS sessions. While the multitasking offered by Windows
3.0 in enhanced mode isn't as good as the multitasking offered by OS/2. it is
good enough to let you run compiles while you edit, and play solitaire while you
download.

Memory Use Guidelines

Every real application must be prepared to runout of memory and other system
resources. Anytime you allocate or lock a memory block, you must check to see
if the operation succeeded, and bail out cleanly if it hasn't. Unfortunately, this
will clutter your code—but that's the price you pay for having a robust program.
Paranoia in the proper places is a virtue: as you write Windows code, assume



Memory Management issues 7

that each allocation might fail, or might succeed only at the expense of forcing
the Windows kernel to go through a lengthy series of discards and moves.

In real mode, you can't leave memory blocks locked longer than necessary,
cither: you need to be nice to the other programs on the system. If you write a
program that’s a memory hog it'll slow down the user's whole Windows system,
and your program will get a bad reputation. The price of following the rules for
real mode is that your application may be a tad slower because it has to lock and
unlock memory blocks all the time.

On the other hand, Windows uses the memory mapping hardware in
standard and enhanced modes. If your program really needs a lot of memory,
you might want to mark it protected-mode only with the /t switch to the
resource compiler. If you limit your program to protected mode, the guidelines
for memory usage are relaxed a bit: you can allocate and lock down all your
memory when your program is initialized, and unlock and release it all when
your window is destroyed. But don’t allocate fixed memory blocks: these are
different from movable blocks that have been locked, and might cause some
fragmentation. Realize, too, that limiting your program to protected mode will
limit your market to people with machines that can run standard or enhanced
mode Windows on their computers. While that may not be much of a problem
in the future, it will certainly keep you from selling your program to the huge
installed base of 640K machines.

If you want, you can allow your program to run in all modes but optimize
locking for protected mode. What you'd do is use the GetWinFlags function
to determine the memory mode and set a global variable for your program. in
protected mode you'd only lock a block once when it was allocated and release
it once before freeing it. In real mode you’d unlock the block anytime it was not
needed, and relock it whenever it was needed.

If you want to require Windows 3.1 to run your program, you automatically
restrict your program to Standard or Enhanced mode: support for the three real
modes was dropped in Windows 3.1, specifically to make life easier for
developers. That doesn’t change the marketing situation: somebody with an
8086 won't be able to run your programs. But it at least reduces the explanations
vou'll have to make—you can blame Microsoft—and it might even encourage
people who want to run your programs to upgrade their machines rather than
vell at you to support real mode.

Why Medium Model?

Iadvocate building most real-world Windows programs in the medium memory
model. Small model is too restrictive, and compact and large models will not
perform well in real mode. Medium model itself would be too restrictive
hecause of the 64K limit on near data, except that you can augment the model
with far data pointers and global heap allocations.



8 Introduction

If you are building protected-mode-only programs, or programs that
require Windows 3.1 or later, the arguments for medium model are somewhat
weaker. In this case, large model programs may perform satisfactorily, although
it is easier to get multiple instances of a medium model program than multiple
instances of a large model program. I advocate medium-model multiple-
instance programs rather than large-model Multiple Document Interface pro-
grams because they are faster, easier to maintain, and work better with DDE and
OLE.

Unless your program is so small that all your code will fit into 64K, you'll need
multiple code segments, which is the default in medium model. You can control
the segment names explicitly with the -NT switch to MSC; in this way you can
combine several object modules into a single segment. But most of the time,
your problem wont be that segments are too small—it'll be that segments are too -
big. For dividing the functions in a module into multiple segments, you can use
the alloc_text pragma in MSC. We'll discuss segment-size optimizatién and
tuning at some length later on.

The default function call in medium model is done with long (far) code
pointers. Far procedures are safe, but not efficient. When you're developing a
program you should stick to the safe defaults; you can later optimize your code
by changing those far functions which are called only within a segment to near
procedures. If you switch to near procedures too soon, you may find thatit'sa
burden to keep track of them when you tune your segmentation. Get things
working correctly first; you can make them fast afterwards.

In order to access data on the global heap from medium model, you'll need
to use far data pointers. This isn’t especially hard—you just use the LPSTR type
(defined in windows.h as char _far *) for strings on the global heap, or
similar _£ar pointers for other data types. :

Far data can get tricky when you need to use library routines. In the medium
model almost all C library routines are built with far code and near data. The
exceptions are special memory and string routines prefixed with _£, such as
_fstrcpy (); these model-independent far functions were added in MSC 6.0
to support mixed-model programming. You don’t usually need to use these
functions from Windows, however; instead, you can use Windows kernel
functions like 1strcpy ().

Many of the more specialized C library functions don’t have far equivalents.
You can do one of three things when you need to use one of these functions:
roll your own far version from scratch, make a far version that does nothing but
copy its arguments to local variables and call the library function, or copy the
arguments to local variables before calling the library function. In practice, the
last option turns out to be more convenient than it sounds, since where there
is one library function there are often a string of them.



