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PREFACE

The last twenty years have witnessed much progress aimed at improving and
controlling the kinetics of metallurgical processing operations.

Thanks to continued advances, metal products of higher chemical and
physical quality are now being produced more efficiently than ever béfore. In
a highly competitive world, all metallurgical graduatés working in the ’
processing industries need to understand the central role that heat, mass, and
momentum transport phenomena play in determining process kinetics.
Similarly, they need to learn how thermodynamic relationships, or equilibria,
must form an integral part of process kinetics, and how these can be
incorporated into the subject. R :

The primary purpose of this text, therefore, is to provide a fairly compre-
hensive, but basic, treatment of process engineering metallurgy. While many
books have been written on the subject of transport phenomena for chemical
and mechanical engineers, and these are of value to the ptpcess metallurgist,
most of the examples and illustrations cited are naturally external to the field
(of process metallurgy). Further, many of the texts are too extensive, or
specialized, for easy incorporation into a metallurgical/materials science
curriculum. . '

On the other side, many practising mechanical/chemical engineers entering
the metallurgical field will not normally have been exposed to the peculiar
features of metallurgical operations; these include very high processing -
temperatures, and unusual fluids (e.g. liquid metals and slags), whose
chemical and physicz1 properties can result in phenomena unique to metal-
lurgical, as opposed to chemical, engineering. Similarly, their background in
chemical, rather than metallurgical, thermodynamics will tend to make their .
knowledge of mass transport phenomena more difficult to apply.

Since the amount of time devoted 1o process metallurgy varies markedly
from one curriculum to another, the present text has been written to take this
into account, and can be. ingested piecewise, as it is divided into four major
components. ‘

Chapter 1 introduces the subject, illustrating the role of transport phenom-
ena in typical metallurgical operations. It goes on to present the fundamental
or atomistic, origin of those transport coefficients governing the flow of
momentum, heat, and mass within a system. Radiation properties are also.
presented at this point. o

Chapters 2 and 3 go on to treat fluid statics, and then fluid dynamics in
metallurgy, followed by process modelling techniques, using a series of
~-levant examples.

Chapter 4 provides an integrated approach to the subject of conductive
heat flow, and diffusion in solids (or other stationary systems), leading into
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Chapter 5, where the effects of convection on heat and mass flows are
incorporated.

Chnnter 6 completes the text, mtroducmg the reader to the numerical
modelling of metallurgical processes, and demonstrating the various techni-
ques whereby complex metallurgical operatlons can be both successfully
- analysed and synthesized.

In presenting the subject matter in this way, the book reflects three courses
(heat and mass transfer, fluid dynamics, numerical modelling) presented to a
generation of patient McGill students. Many worked examples are presented
to illustrate the subject areas. A series of relevant exercises, often dealing with
actual industrial examples the author has encountered over the past twenty
years, are also included for study.

In conclusion, it is hoped that this book can provide a startmg pomt for the
‘metallurgical student or graduate entering the processing industry. Equally,
the text can provide valuable orientation to engineers or scientists of a
different background, but working, or about to enter, the metallurgical
processing industries. Given the extensive data on physical properties, to-
gether‘with appendices providing useful thermodynamic data, and conversion
factors, it is hoped that the text can also be used as a quick reference source
and workbook.

McGill University R LLG
February 1987 .
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1

AN INTRODUCTION TO TRANSPORT
PHENOMENA AND PROPERTIES IN
METALLURGICAL OPERATIONS

1.0. INTRODUCTION

In today’s world of high-level competition, of technical competence, and of
relatively low bulk-transportation costs, any company involved in chemical
or metallurgical manufacturing must make maximum use of efficient pro-
cessing operations. For engineers and researchers engaged in the .'~velopment
and operation of such practices, a knowledge of thermodynamics and process
kinetics is essential.

The present text has been written with this in mind and is intended for those
interested in the metallurgical industry. The various concepts of fluid, heat,
and mass transfer are therefore introduced by way of a series of metallurgical
examples and practical problems.

Since useful solutions to many industrial design problems are readily
obtaineu without one having to become too deeply involved in the detailed
complexitie< of transport phenomena, care has been taken to avoid unnecess-
ary complications in the treatment. The reader is therefore referred to the
specialist literature for more detailed and exhaustive treatments of the various
~ topics and processes discussed in the present text.

1.1. EXAMPLES OF HEAT AND MASS TRANSFER IN
METALLURGICAL ENGINEERING

Practically all metallurgical processing operations involve, in one way or
another, fluid flow and the transfer of heat and/or mass. To illustrate this
statement and to familiarize the reader with some typical metallurgical
operations, it is worthwhile to look briefly at some of the heat, mass, and
momentum transfer aspects involved in steel-making. Figure 1.1 illustrates
the sequence of operations typically performed in going from raw iron oxides
to steel. ‘

(a) Coke-making

-

L

The first major operation (Fig. 1.2) involves the production of coke, which is
required for the reduction of iron oxides to iron. The process involves the
destructive distillation of metallurgical grade coals in coking chambers (éealcd
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Iron ore (pellets or sinter)
Carbon (coke)
Limestone (in lump form)

Iron
blast

furhace Desulphurizaton (CaC;;CaO;Mg;. int)

Treated iron
# ———————————
@ {4%(C)f.,0.02%(S)ee.. .}

Molten iron

0, {4%(C)re.0.8%(Si)re,0.08% (S)fe...} Tithodo car
Scrap steel AN
(~30wt%) 2 Deoxidation/alloying/ desulphurization
4= Raw steel / (Al,Fe-Si,Fe-Mn, Fe-Nb,CaSi,,.. )
L5 {0.1%(C)re, ] ;l'iﬁmmg To: Ingot casting aisle
Basi 0%(Si) FE, |=[ 'adie
o :;;‘;n 0.05%( O)se, .....} 5= Treated steel |
furnace {ppm: (O)g=8-00;(S)g~2-200,.....} -

To: Continuous
casting machine

Fic. 1.1. Schematic flowsheet showing the major operations conventionally used for
; converting iron into raw steel.

Coal charging hoppers ~ Coke oven off-gases  Longitudinal
g o : sy to by-product plant  section at @)

Leveller
Incandescent T Pusher
coke ‘pushed’ AR :
into coke car ey . ]
for water ok

Coke oven gasg

Regenerator brick checkerwork grtheated air @

for air pre-heat

quench

—_—
Sm

Fic. 1.2. The vertical slot coke oven for the production of metallurgical grade coke
for the iron blast furnace.

vertical slots 4 m high, 12 m wide, 0.5 m thick) of by-product coke ovens. The
heat needed for distillation of the volatiles is transferred through the -
brickwork from adjacent vertical flues by ¢ombustion of enriched blast
furndce off-gases. After about 17 hours’ induction time, the incandescent coke
is pushed out into transfer railway cars. During its fall, it breaks apart to form
large lumps. The col;eﬁlumps are then transferred to the quenching tower, in
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which an intense and normally intermittent water spray quenches them for
subsequent charging to the blast furnace.

This quenching procedure is an interesting example of heat'transfer, in that
the heat transferred from the inner portions of the coke lumps vaporizes the
water running down their external surfaces. The overall operation involves
the emission of vast plumes of steam (as well as certain undesirable vapours
such as phenols and cyanides). The objectives here are to ensure the minimum
amount of retained moisture in the coke, its endothermic effects contributing
to poor fuel efficiency in the blast furnace. '

(b) Blast furnance

The iron-making blast furnace (Fig. 1.3), has evolved over many hundreds of
years to become an efficient countercurrent exchanger of heat and counter-
current exchanger of mass (i.e., of oxygen). Thus iron oxide (as pellets or
sinter), together with coke and limestone, are successively charged through
the top of the furnace. The charge slowly descends through the shaft (an eight-
hour journey) and is gradually heated by hot ascending gases. As the gas lower
down the furnace is richer in carbon monoxide, and therefore more reducing
towards iron oxides, the pellets are gradually reduced as a result of mass
transfer of carbon monoxide (and hydrogen) from the gas phase into the
pellet, i.e.

3Fe,0,+CO—2Fe,0,+CO,
Fe,0,+CO—3Fe0 +CO,

Final deoxidation is accomplished down in the cohesive zone where high
temperatures and highly reducing conditions result in the reduction of wustite
(FeO) to iron. Impurities such as silica, sulphur, alumina, and magnesia,
present in the original pellets associate with the lime and are removed as a
molten slag.

The final reduction from FeO takes place via mass transfer mechanisms:

1 FeO+CO—-Fe+CO, Indirect reducti
and CO, + C(coke)—»2CO ¢t recuction
2 FeO+C—-Fe+CO Direct reduction

The CO/CO, reaction is often termed the solution loss reaction (ie.,
dissolution of coke by CO,). Although the purpose of the coke is obviously to
act as a reductant, it also plays another critical role in that it hehaves as a
supporting pillar for overlaying burden. In the region below the cohesive (or
‘sticky’) zone in Fig. 1.3, everything =lse is molten or melting (i.e., slag and pig
iron).



