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Preface

In very general terms, a system is a mechanism that operates upon signals (a form of
information) to produce other signals. As examples, a stereo system takes a low-level
audio signal and produces a high-level sound signal from the system’s speakers, a
radar tracking system takes radar return signals and produces estimates of where a
target will be at the next radar return, and an economical model takes available
economic data and predicts future economic behavior. In these diverse situations,
the system concept is central and plays an important role in our increasingly
quantitative-oriented world. Understanding the system theory approach is therefore
becoming indispensable in such disciplines as engineering, economics, computer
science, modeling, mathematics, and science.

This textbook is concerned with presenting the fundamental aspects of the
system theory approach. It is written at a level that is comprehensible to students
who have had a course in calculus, have an ability to manipulate complex numbers,
and have had some exposure to differential equations. For most electrical engineer-
ing students, it should be possible to master the ideas in this text at the junior-year
level. Students in other disciplines may be appropriately introduced to the system
theory approach upon completion of the aforementioned prerequisites.

Although many of the motivating examples that appear throughout this text
are oriented toward electrical engineering, a conscientious effort has been made to
incorporate examples from other disciplines as well. The reasoning behind this
approach is twofold. First, it is strongly felt that clectrical engineering students
should be made to appreciate that the tools they use in studying circuits, communi-
cation nciworks, and control systems are directly applicable to a far -vider class of
interesting applications.

Second, in recent years other quantitative-oriented disciplines are increasingly
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x Preface

being exposed to concepts that have been standard to the electrical engineering
profession. With this in mind, this textbook seeks to expose the important aspects of
system theory from a general viewpoint and to demonstrate their applicability to
electrical engineering and other disciplines by means of selected examples and prob-
lems.

It is generally possible to classify a given system as being either discrete-time,
continuous-time, or a combination of discrete- and continuous-time. It is widely
appreciated that the basic concepts central to discrete-time systems are more easily
understood than are their continuous-time counterparts. On the other hand, it can
be generally said that to each discrete-time concept there exists an identifiable
continuous-time analogy. This being the case, we have here made the pedagogical
decision to first develop a discrete-time idea and then immediately follow it with the
analogous continuous-time idea.

In the introductory chapter, a philosophical treatment of the notions of signals
and systems is undertaken. This includes the essential features distinguishing a
discrete- and continuous-time signal and system; the conversion operation of
continuous- to discrete-time signals; and motivational applications that include
digital filtering, circuit analysis, and numerical integration and differentiation.

The formal development of signal theory is begun in Chapter 2 where discrete-
time signals are examined in detail. It is there shown that a discrete-time signal may
be viewed as a sequence of numbers. A procedure for making changes in the
discrete-time variable is then studied. Furthermore, elementary operations on sig-
nals and fundamental signals such as the unit-impulse, unit-step, and sinusoid are
explored. The chapter concludes with relevant signal operator applications. A simi-
lar treatment of continous-time signals is made in Chapter 3. The analogy between
discrete- and continuous-time signals is here emphasized.

Chapter 4 develops the fundamental notion of linear signal operators. Linear
signal operators are important due to their widespread usage in various practical
applications and to the fact that a rather thorough analysis of such operators is
possible. A parallel treatment of linear discrete- and continous-time signal operators
is here given in which the similarity between analogous concepts is emphasized.
Attention is directed toward the homogeniety and additivity properties of linear
operators. In addition, such fundamental notions as operator time-invariance, sta-
bility, and transfer function are examined.

In contemporary system theory, the use of signal transformation theory is
pervasive. For continous-time signals, the Laplace and Fourier transforms are pre-
eminent. The basic properties and applications of the Laplace transform are studied
in Chapter 5. The Laplace transform is shown to be an important tool for the study
of signals and the linear operations on signals.

In Chapter 6 the techniques of transformation theory are developed for
discrete-time signals. The z-transform is closely related to the Laplace transform; its
function is to reduce linear difference equations or equivalently Jinear discrete-time
Systems to an algebraic form just as the Laplace transform reduces differential
equations to algebraic forms. The applications of both Laplace and z-transform
theory is presented in Chapter 7. Here the transfer function concept is used in
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several analysis contexts: modeling, relating interconnected systems, stability analy-
sis, and others.

Chapter 8 presents the fundamental elements of Fourier series expansions and
the corresponding signal approximation techniques leading to the development of
Fourier transforms (particularly the computational aspects thereof) in Chapter 9.

The material presented is suitable for junior-level engineering students. A pre-
liminary course in network theory is helpful for understanding the applications in
Chapter 7. The book may also be used in a self-study mode for engineers and
scientists desiring an introduction to the area of signal analysis.

James A. Cadzow
Hugh F. Van Landingham
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Introduction to Signals

and Systems

1.1 INTRODUCTION TO SIGNALS

Contemporary system theory has found application in virtually all quantitative dis-
ciplines and even in disciplines that were heretofore conceived of as being nonuan
titative in nature. Central to the system theory philosophy is the concept of signal.
In a most fundamental sense, the wordsignal connotes the process of conveying
information in some format. This interpretation holds for the most primitive form of
information transmittal such as the smoke signal system employed by earlv-da
American Indians to the most sophisticated form of modern-day communication
theory.

For our purposes, we usc the expression signal to denote a measurement or
observation that contains information describing some phenomenon. In order to
give our study mathematical structure, we designate signals by means of svinbols
such as the letters w, x, or y and refer to them as the signals u. x, or v. Thus. in a
particular situation. the signal x might denote a particular time segment of an wudio
voltage waveform. the time history of an economic process, the time history of the
ncurological activity of a muscle system, and so forth.

~Information by its very nature implies the notion of being variable or change-
able. This is readhly demonstrated by the ordinary process of conversation in which
information is transicired by auditory signals (words). Thus, the prehistoric cave
dweller, who could emit only a series of gruntlike sounds, was able to transmit far
less information than 1s his or her twenticth-century counterpart, who is able to use
a complex time sequence of sounds (words and sentences),

A signal in which the information characteristics can change, or fluctuate. is

8850204



2 Introduction to Signals and Systems Chap. 1

said to be dependent on another variable, which has been classically called time.
This independent variable is referred to as time, since, in a large variety of signal
theory applications, the underlying independent variable is intrinsically time. For
example, the electrocardiogram signal that is displayed on a hospital monitor is seen
to have an amplitude (voltage corresponding to the heart’s electrical activity) that
changes as a function of time. It must be mentioned, however, that there are many
situations in which the signal is dependent on a variable other than time (for
instance, distance, temperature, or frequency). Thus, when studying the behavior of
a vibrating string, the independent variable is a distance measure. The nature of the
independent variable is, of course, contingent on the particular measurement or
observation being studied. We suffer no real loss in generality, however, by referring
to the independent variable as time.

A signal is then very simply an ordinary function of an independent variable.
Thus, the value of the signal x at the time instant ¢ is denoted by the symbol x{t).
The reader must be careful in distinguishing the difference between the symbol x,
which denotes the entire time history of the signal, and the symbol x(z), which
specifies the value of the signal at the time instant ¢, Although this distinction is of
importance from a precise mathematical viewpoint, we often use the symbol x(t) to
denote a signal whenever there is no danger of misinterpretation. This practice is
common in much of signal theory literature.

Continuous - and Discrete- Time Signals

As indicated above, a signal denotes a measurement or observation that contains
information relevant to some phenomenon. Generally, the measurement’s amplitude
changes as time evolves. The manner in which the time variable evolves plays a
most profound role in the resultant signal analysis. In many practical situations, the
given measurement can change at any instant of time. These signals are called
continuous-time signals, to reflect th- continuous dependence of the signal on time.
On the other hand, there exists an important class of processes in which the relevant
signals can change value (or are defined) only at specific instants of time. These
signals are said to be discrete-time signals. These rather abstract concepts are best
illustrated by examples.

A sketch of the temperature fluctuation in a room might appear as shown in
Fig. 1.1a. Here, signal x specifies the time history of the room temperature with x()
denoting its value at the specific time instant r. Since the room’s temperature is
capable of changing at any instant of time, this is clearly a continuous-time signal.
In point of fact, many of nature’s phenomena are modeled by relationships (differ-
ential equations) that are explicitly dependent on continuous-time signals. This is
exemplified by Newton’s laws of motion, voltage-current relationships in electrical
networks, thermodynamic laws, and so forth.

On the other hand, there exists a class of dynamical phenomena that, typically,
are man-made in origin and are characterized by discrete-time signals. Examples of
this type of signal are abundant in the fields of econometrics, numerical analysis
(algorithms), social sciences, operations research, computer sciences, etc. As an illus-
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Figure L1 Sketch of typical signals that are functions of time: (4) room temper-
ature versus ¢, and (b) gross national product versus ¢,,.

tration, consider the determination of our nation’s gross national product (GNP).
The gross national product is calculated at the end of specific three-month intervals,
at which time the various economical components that constitute GNP are deter-
mined. A typical plot of GNP might appear as shown in Fig. 1.1b where ¢, denotes
the end of the given nth three-month period at which time the GNP is 1o be
evaluated. This signal is obviously discrete-time in nature. It is noted that the
abscissa axis in this plot is drawn in a continuous manner even though the signal
itself has meaning only at the specific time instants ¢,. It is for illustrative purposes
that we have so displayed the abscissa axis. :

Before proceeding further, let us give a more general interpretation to a
discrete-time signal. In essence, a discrete-time signal is an ordered set of numbers

s X(E2q), x(t_ ), x(tg), x(tq), x(tq), ... (1.1a)

where the discrete-time variable t, indicates in which position the number x{t,)
appears in the set of numbers. The three dots to the left of x(t_,) and to the right of
x(t,) indicate that the set of numbers continues indefinitely to the left and right,
respectively. With this interpretation, it follows that we can think of a discrete-time
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signal as being a sequence of numbers. For notational convenience, it is desirable to
suppress the t in the independent variable :, and express x(t,) as x(n) with n being an
integer. Therefore, we hereafter interpret a discrete-time signal as being a sequence
of numbers in which x(n) denotes the nth member of the sequence. Thus, the
discrete-time signal (1.1a} will be hereafter more compactly represented as

v X(—2), x(— 1), x(0), x(1), x(2), ... (1.1b)

In using this shorthand notation, however, it is important to always keep in mind
the implicit concept that the integer argument n designates the time instant ¢, at
which the measure x(t,) becomes known,

There has recently been a great deal of interest devoted to the study of
discrete-time signals. This is obviously a byproduct of the digital computer’s devel-
opment and utilization. The digital computer is a device typically employed to carry
out some form of data processing in a rapid manner. Since the computer can
essentially only add, subtract, multiply, and divide numbers, the data upon which it
operates must be in the format of a sequence of numbers (recorded on magnetic
tape, disks, cards, etc.). Therefore, the digital computer is typically used to perform
some systematic processing of data which are in the form of a discrete-time signal.
Hopefully, this will serve as an adequate motivational stimulus for the further study
of discrete-time signals.

The signals displayed in Fig. 1.1 are obviously different in nature. In Fig, 1.1a,
the time variable r takes on a continuum of values (that is, values in an interval),
and it is for this reason that the corresponding signal is said to be a continuous-time
signal. On the other hand, the time variable for the signal displayed in Fig. 1.1b is
defined only at discrete-time instants, which results in such signals being referred to
as discrete-time signals. Most signals can be classified as being either continuous- or
discrete-time in nature as exemplified in Table 1.1.

Since continuous- and discrete-time signals are basically different, it is only
natural that different methods have evolved for analyzing their characteristics. Thus
we treat these two important classes of signals separately. Wherever possible, how-
cver, we point out the many common characteristics shared by each. In the next two
chapters, we study some basic properties of discrete-time signals and then extend
these concepts to continuous-time signals. This order of presentation reflects the fact
that discrete-time signals are inherently easiéer to characterize and study.

TABLE 1.1 EXAMPLES OF DISCRETE- AND CONTINUOUS-TIME SIGNALS

Signal Description Signal Type
Monthly new house sales in U.S.A. Discrete-time
Hourly traffic flow at a highway intersection Discrete-time
Wecekly hotel occupancies Discrete-time
Daily room temperature at 8:00 A.M. Continuous-time
Voltage waveform at an amplifier’s output terminal Continuous-time
Speed of a launched rocket Continuous-time

tlectrocardiogram recording Continuous-time
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1.2 CONTINUOUS TO DISCRETE-TIME
SIGNAL CONVERSION

In many applications, the underlying descriptive signal(s) being investigated (&r
used) is inherently continuous-time in nature. If we are to employ the considerable
powers of the digital computer for the processing of such signals, however, it is
necessary to convert these signals into a format that is compatible with digital
computation. Namely, it is necessary to transform the-continuous-time signal into a
sequence of numbers that may then be manipulated by a digital computer algo-
rithm. This transformation process is commonly referred to as analog-to-digital
( A-to-D ) conversion.

The operation of A-to-D conversion may be conveniently depicted as a switch
closing instantancously at the sample instants ¢,. This conceptual model is depicted
in Fig. 1.2, where the continuous-time signal x(¢j appears at the switch’s input
terminal and the associated sampled elements x(1,) appear at the output terminal.
A-to-D converters are commonly available hardware items that appear in a variety
of computer-based systems as typified by digital controllers and signal processors.

It is possible to provide a rather thorough analysis of the sampling operation.
This is particularly true in the case where the sampling instants are equidistant, that
is,

t, =nT forn=0, +£1, +2,... , (1.2)

in which T is a fixed time interval specifying the sampling period. For this uniform
sampling scheme, it is readily shown that no information is lost through the sam-
pling process provided that (1) the continuous-time signal is bandlimited and (2) the
sampling period T is selected to be smaller than the reciprocal of the highest
frequency component of the continuous-time signal. This is a rather startling resilt
since it implies that in such cases, the entire continuous-time signal can be equiva-
lently represented by its sampled values. (See Fig. 1.2))

x(t) x{t,) . . . .
P N u Flgure_ 1.2 Continous-time to discrete-
¢ time signal conversion.

4

Example 1.1

Determine the number sequence generated when the continuous-time signal

) 11—t for -1 <1<
x =
0o . for all other values of ¢

is uniformly sampled with sampling period (1) T =% s (second), (2) T =1 s, and (3)
T =1s.

It is beneficial to make g plot of x(t) versus ¢ as shown in Fig. 1.3a in order to
visualize the sampling operation. In the following, we shall drop the explicit appearance
of sampling period T and write x(n) instead of x(nT) for the sampled signal. Thus. the
reader must interpret the sampled signal as a sequence of numbers spaced by T-second
intervals, where T is the underlying sampling period.
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x{t)
1
-1 0 1 't
(a)
x{n)
1
T =, second
*—o— T I I T *——o—0—
-6 -5 <4 -3 -2 -1 O 2 3 4 5 6 n
x(n)
' 1
T:%second
————& I I <+ *—>
-3 -2 -1 0 1 2 3 n
(b)
x{n)
1
T =1 second
. . >~
] 0 1 n
(c)

is evident in this case for T = 1 second.

/

Chap. 1

Figure 1.3 Process of uniform sampling
with different sampling periods: (a) un-
sampled waveform (effectively. T = 0 s);
)T =1s:(c) T =4s;and () T = 15,

Figure 1.3b—d gives a plot of the resultant sampled sequences generated for the
three specified sampling periods. Although the same function x(r} is being sampled, it 1s
clear that the sampled sequence obtained depends very critically on the sampling
period T. For example, all essential information can be lost by selecting T too large, as .

Example 1.2

Determine the number sequence generated when the continuous-time function

x(1) ={

t+ ¢

is uniformly sampled with sampling period T.
In contrast to the approach taken in Example 1.1, we determine the resultant

fort <0
fort >0
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sampled signal using analytical means. Specifically, the sampled number x(nT) is simply
obtained by evaluating the function x(t} at the time instant ¢ = nT. For the function
above, we then have

0 forn=—1, =2, =3, ...
nT + &7 forn=012, ...

x(nT) = {

and, as Is our practice in the remainder of this text, we now drop the explicit ap-
pearance of T in the argument of x(nT) to obtain

(n) = 0 forn= -1, =2, -3, ...
M= nT + "7 forn=0,1,2,...

From this expression, it is apparent that the sequence generated depends strongly on
the sampling period T.

1.3 INTRODUCTION TO SYSTEMS

Although the study of continucus- and discrete-time signals is important within its
own right, we are primarily concerned with investigating procedures whereby a
given signal x is changed (transformed) into another signal y in some systematic
manner. This transformation procedure is represented by the mathematical notation

y=Tx (1.3)

where T represents some well-defined rule by which the signal x is changed into the
signal y. Relationship (1.3) defines a “system” characterization and is depicted as
shown in Fig. 1.4. The arrows on the lines leading into and out of the box indicate
the direction of signal flow.

y . .
—_—] T ——  Figure 1.4 'Block diagram of system rep-
resentation.

In this representation, we interpret x as being the system’s input signal (or
excitation) and y as the system’s corresponding output signal (or response). Thus,
the excitation signal x is said to generate the response signal y through the charac-
teristic rule T. The rule T within the box completely defines the operational charac-
teristic of the system. We are mainly concerned with those situations in which this
rule takes the form of a linear differential equation or a linear difference equation.
Typical examples of this system’s viewpoint now follow.

I. The system is an automobile, the excitation is the accelerator pedal position,
and the response is the automobile’s velocity.

2. The system is the U.S. economy, the excitation is the prime interest rate, and
the response is the inflation rate.

3. The system is an FM stereo receiver, the excitation is an RF signal (to which



