MICROCOMPUTER
EXPERIMENTATION
WITH THE INTEL SDK-85

LANCE A. LEVENTHAL
COLIN WALSH

0000759

MICROCOMPUTER
~ EXPERIMENTATION
WITH THE INTEL SDK-85

LANCE A. LEVENTHAL
COLIN WALSH

' Emulative Systems Company
San Diego, California

PRENTICE-HALL, INC., Englewood Ciiffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Leventhal, Lance A date— .
Microcomputer experimentation with the Intel SDK-85.
Bibliography: p.
Includes index.
1. INTEL SDK-85 (Computer) 1. Walsh, William Colin,
joint author. II. Title.
QA76.8.1293L48 1980, - 001.6’4’05 79-22052
ISBN 0-13-580860-X -~
Editorial/production supervision
and interior design by Virginia Huebner
Cover design by Edsal Enterprises
Manufacturing buyer: Gordon Osbourne

© 1980 by Prentice-Hall, Inc., Englewood Cliffs, N.J, 07632

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE~HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Preface

This manual provides an introductory laboratory for those who plan to
use microcomputers as controllers in instruments, communications
systems, computer peripherals, test equipment, business equipment,
industrial control, process control, signal processing, and consumer
products. Our emphasis is on users who plan to purchase assembled
microcomputers and use them in engineering applications. OQur aims are:
1) to introduce the basic methods of assembly language programming, 2)
to show how to perform simple functions that are required in controller
applications, 3) to provide examples of hardware/software tradeoffs, 4) to
show how programs should be designed, debugged, and documented, 5) to
describe the interfacing of microcomputers with mechanical devices and
with human users, 6) to demonstrate alternative approaches to input/out-
put and timing, 7) to present the advantages and uses of programmable
LSI devices, and 8) to describe methods by which microcomputers can
communicate with external systems. We have provided examples that are
drawn from actual applications, but are simplified so as not to require
extensive background, special equipment (beyond the basic micro-
computer), or long setup times. We have made the manual self-contained,
so that it can be used in a variety of disciplines at differing levels.

We have based the manual on the Intel SDK-85 microcomputer
because of its low cost, wide availability, completeness, and ease of use,
The SDK-85 does not require additional peripherals, uses a popular

Preface

microprocessor, has adequate documentation, and is produced by a
leading semiconductor manufacturer. It is also easy to assemble, includes
a prototyping area and expansion facilities, and provides all the compo-
nents of typical microcomputer systems. The SDK-85 has a ROM-based
moniter for simple interaction and has enough memory and input/output
lines for a variety of useful examples.

Our emphasis throughout this manual is on the control of external
systems through software. We have illustrated this control with the
simplest possible examples using switches, single displays, and the on-
board peripherals. We intend to cover more advanced interfacing topics in
a later continuation. Our intent here has been to provide exercises that
require little additional hardware and can be performed in short time
periods. We have often included initial programs as starting points for
students.

We have followed a standard format throughout the manual so as to
conform with other references. We have used the notation from the Intel
8085 assembler. We have tried to make all programs clear, simple, well-
structured, and well-documented. We have avoided programming tricks
even when they would make programs somewhat shorter and faster. Good
programming practices are essential for those who plan to work with
microcomputers and we have tried to provide sound examples for students
to follow.

This manual does not describe the Intel 8085 microprocessor in
detail. We have provided references to the standard 8085 manuals and to
appropriate textbooks. Nor does this manual provide a complete discus-
sion of 8085 assembly language programming. We have therefore provided
extensive references to programming books. However, we have tried to
make the manual self-contained so that it can be used independently of
any of the reference material.

A manual like this obviously requires inputs from many people. We
would like to particularly thank the faculty and students of the Mechan-
_ical Engineering Department of San Diego State University for giving us an
opportunity to test this material in a class environment. Dr. George Craig
and Mr. George Mansfield arranged the course. Among those who pointed
out errors and provided helpful suggestions were Mr. Richard Chiang, Mr.
Chuck Chandler, Mr. Douglas Dahl, Mr. Augustin Gonzalez, Mr. James
Housman, Mr. Martin Lee, Mr. Sergio Lopez, Mr. Chan Nguyen, Mr. James
Scheidler, Mr. Shiv Singh, Mr. Kunvarji Thakor, and Mr. Miroslaw
Czaljkowski. Our special thanks go to Mr. Mihran LeVon Jr. of NCR
Corporation who tried many of the experiments and suggested numerous
improvements and corrections.

Others who helped include Mr. Gary Hankins and Mr. Winthrop
Saville of Sorrento Valley Associates. The reviewers, all of them anony-
mous except for Mr. Sol Libes of Union County Technical Institute (New

Preface xi

Jersey), provided many useful suggestions. Qur editor, Mr. Paul Becker,
encouraged this project as did Mr. Walter Welch, the local representative
of Prentice-Hall. Ms. Marielle Brand-Carter and Ms. Jacqueline Roberge
did most of the typing. Obviously, all remaining errors, omissions, and
inconsistencies are the responsibility of the authors.

LANCE A. LEVENTHAL
San Diego, California COLIN WALSH

Contents

PREFACE

LABORATORY 0—INTRODUCTION TO THE SDK-85 MICROCOMPUTER

Overview 2

Resetting The Computer - 4
Examing Memory 4
Changing Memory 6
Executing A Program 7
Key Point Summary 8

LABORATORY 1-WRITING AND RUNNING SIMPLE PROGRAMS

One’s—Complement Program 12

Entering And Running The One’s—Complement Program 14
Using Registers H And L 17

Examining Registers 18

Comparing Programs 21

Adding Two Numbers 21

Key Point Summary 23

Contents

LABORATORY 2—-SIMPLE INPUT FOR THE
SDK-85 I\MC}BOCOMPUTER

8085 /0 Instructions 29

Simple SDK-85 Input 29

flags And €onditional Jumps 37
Waiting Fpr A Switch Closure 317
S‘,oecia/,&g Positions 34

Exatiining Flags 35

Waiting For Two Closures 36
Searching For A Starting Character 38
Key Point Sumrnary 38

LABURATORY 3-SIMPLE OUTPUT FOR THE
SDK-85 MICROCOMPUTER

Anaching The LEDs 43
&§365 input/Cuiput Poris 43
Tuiring On An LED 46
Froviding A Dgiay. . « 4%

A Longer Delay * %9
Controlling individual Bits 49
Estaislishing A Duty Cycle 57
Key Point Surmary 53

LABORATORY 4—PROCESSING DATA INPUTS

Frocessing Data fnputs 57
Waiting For Any Closure 58
Debounicing A Switch 60
Counting Closures 62

ldentifying The Switch 63
Using A Hardware Encoder 66
Key Point Summary 68

LABORATORY 5—PROCESSING DATA QUTPUTS

Processing Outputs 72

Using The SDK-85 Seven-Segment Displays 72
Adding A Delay 76

Seven-Segment Code Conversion 78

Counting Ci The Displays a1

Switch And Light Program 83

Advantages And Disadvantages Of Lookup Tables
Hardware/Software Tradeoffs 84

Key Point Summary 86

Contents

LABORATORY 6—-PROCESSING DATA ARRAYS
Data Arrays 89

Processing Array With The 8085 Microprocessor 91

Sum Of Data 93

Using A Terminator 97
Displaying An Array 99
Key Point Summary 102

LABORATORY 7—-FORMING DATA ARRAYS

Forming Data Arrays 106

Clearing An Array 107

Piacing Velues In An Array 109
Entering Input Data Into An Array 111
Accessing Specific Elements 116
Counting Switch Closures 118

Key Point Summary 118

LABORATORY 8—DESIGNING AND DEBUGGING PROGRAMS

Stages Of Software Development 122
Flowcharting 123

Flowcharting Example 1—Counting Zeros 124
Flowcharting Example 2—Finding A Maximum Value
Flowcharting Example 3—Produce A Specified Delay
Tools For Debugging 132

SDK-85 Breakpoints 132

SDK-85 Single-Step Mode 133

Debugging Example 1—Counting Zeros 134

A Second Breakpoint 138

Common Programming Errors 140

Key Point Summary 141

LABORATORY 9-ARITHMETIC

Arithmetic 146
An 8-Bit Sum 146
The Binary-Coded-Decimal (BCD) Representation
An 8-Bit Decimal Sum 151
Decimal Summation 152
16-Bit Binary Arithmetic 154
. Rounding 157
Multiple-Precision Arithmetic 160
Arithmetic With Lookup Tables 165
Key Point Summary 168

128
130

149

Contents

LABORATORY A—-SUBROUTINES AND THE STACK

Subroutines 172

The RAM Stack 173

Guidelines For Simple Stack Usage 175
Using The Stack 175

Saving Registers In The Stack 177
A Delay Subroutine 180

An Input Subroutine 182

An Output Subroutine 184

Using The Monitor Subroutines 185
Using The Output Routines 186
Key Point Summary 190

LABORATORY B—INPUT/OUTPUT USING HANDSHAKES

1/0 Requirements 195

Basic 1/0 Methods 195

The 8155 RAM/IO/Timer 197

Configuring The On-Board 8155 Ports 198

Using the 8155 Ports For Simple Data Transfers 200
Using Port C For Status 204

Using Port C For Control 205

Using Port C In The Programmed Status And Control Mode 206
8155 Handshake Input Procedure 209

8155 Handshake OutProcedure 212

Programmable 1/0 Ports 215

Key Point Summary 216

LABORATORY C—INTERRUPTS

Interrupts 220

Characteristics Of Interrupt Systems 221
8085 Interrupt System 221

Special Interrupt-Related Instructions And Features 224
SDK-85 Interrupts 225

SDK-85 Keyboard Interrupts 226
Collecting Data Via Interrupts 228
Using The Vectored Interrupt Key 230
Simple Service Routines 231
Transparent Service Routines 236
Handshake Interrupts 239

Key Point Summary 241

Contents vii

LABORATORY D—TIMING METHODS

Problems Of Timing 246

Varying Delay Routines 247
Waiting/Looking For A Clock Transition 249
Determining The Clock Period 251
Using A Programmable Timer 254
An Elapsed Time Interrupt 258
Real-Time Clock 262

Extending Periods 263

Keeping Time In Standard Units 265
Real-Time Operating Systems 267
Key Point Summary 269

LABORATORY E—SERIAL INPUT/OUTPUT

Serial Input/Output 273
Serial /Parallel Conversion 274

. Timing 276
Using The Real-Time Clock 278
Start And Stop Bits 281
Detecting False Start Bits 288
Generating And Checking Parity 290
Using The SID And SOD Lines 292
Key Point Summary 294

LABORATORY F—EXAMINING PROCESSOR SIGNALS

Examining Processor Signals 299

The System Clock _ 299

Exarnining A Simple Program 300
The Processor Status Signals 301

The Data Transfer Signals 302

The Address Bus 302

More Complex Instruction Cycles 303
Decoding Address Lines 304
Activating The 1/0 Section 305

Key Point Summary 306

APPENDICES

—1— Intel 8085 Instruction Set 308
—2—~ ASC/I Code Table 313

viil Contents

—3— Brief Descriptions Of 8085 Family Devices 314

—4— SDK-85 Laboratory Interfaces 321 :

—5— Summary Of SDK-85 Monitor 325
REFERENCES

INDEX

PURPOSE

(] Laboratory O

Introduction to the
SDK-85 Microcomputer

To learn how to use the basic functions of the SDK-85 microcomputer.

PARTS REQUIRED

An assembled SDK-85 mictocomputer with a 5-Volt power supply.

REFERENCE MATERIALS

SDK-85 User’s Manual, Intel Corp., Santa Clara, CA, December 1977, Chapters 2
(assembly) and 3 (checkout), pp. 4-1 through 4-3 (monitor commands).

WHAT YOU SHOULD LEARN

1)
2)
3)
4)

How to reset the computer.

How to examine the contents of a memory location.
How to change the contents of a memory location.
How to enter and execute a simple program.

1

TERMS

Central processing unit (CPU)—the control section of the com-
puter; the part that controls its operations, fetches and exzcutes
instructions, and performs arithmetic and logical functions.
Hexadecimal (or Hex)—number system with base 16, The digits
are the decimal numbers 0 through 9, followed by the letters A
through F.

Microcomputer—a computer that has a microprocessor as its
central processing unit. v

Microprocessor—a complete central processing unit for a computer
constructed on one or a few chips of silicon.

Monitor—a program that allows the computer user to enter pro-
grams and data, run programs, examine the contents of the com-
puter’s memory and registers, and utilize the computer’s peri-
pherals.

Nonvolatile memory—a memory that retains its contents when
power is removed.

Random-access memory (RAM)-a memory that can be both read
and altered (written) in normal operation.

Read-only memory (ROM)-—a memory that can be read but not
altered in normal operation.

Register—a storage location inside the CPU.
Reset—a control signal that causes the computer to enter a known
initial (or startup) state.

Volatile memory—a memory that loses its contents when power
is removed. ‘

-

8085 INSTRUCTIONS

RST 1 (CF hex)—RESTART 1; on the SDK-85 microcompuier,
this instruction causes the microprocessor to return control to
the monitor program.

OVERVIEW

The Intel SDK-85 (or System Design Kit-85) is an inexpensive micro-
computer based. on' the widely used Intel 8085 microprocessor. Assembly
instructions for the kit are given in Chapters 2 and 3 of the SDK-85
User’s Manual. The kit consists of (see Fig. 0-1) the following items:

FIGURE 0-1. The assembled SDK-85 microcomputer. (Photo, courtesy Intel. Corp.,

Santa Clara, CA.)

An 8085 microprocessor which serves as the central processing
unit or “brain.”

Read-only memory or ROM (an 8355 device which contains
a monitor program). Each 8355 ROff contains 2K 8-bit words
(1K =210 =1024).

Read/write memory or RAM (an 8155 device into which the
user can enter data and programs). Each 8155 RAM contains
256 8-bit words.

Keyboard/display interface (an 8279 device).
24-key keyboard.

Six-digit seven-segment LED display.
Expansion area (upper right-hand side).

Prototyping area (left-hand side).

You can find more complete descriptions of the various devices in
Chapter 5 of the SDK-85 User’s Manual and in the MCS-85 User’s Manual.
Appendix 3 contains partial reproductions of those descriptions.

RESETTING THE COMPUTER

To start using the Intel SDK-85 microcomputer, you must reset it. The
RESET key is in the top left-hand corner of the keyboard; press and re-
lease it. If everything is operating properly, the displays should read

-~ 80 85

The microcomputer is now executing a monitor program stored in
the 8355 read-only memory. This program allows you to control the
microcemputer from the keyboard. You can place programs and data in
read/write memory, execute programs, examine and change the con-
tents of memgqry and registers, and perform other functions which we
will describe later.

EXAMINING MEMORY

The basic SDK-85 system contains 256 words of read/write memory
which occupy addresses 2000 through 20FF hexadecimal. Since the moni-
tor uses the addresses abave 20C2, we will not use those locations.

Note that each memory location has a 16-bit address (four
hexadecimal digits) and contains 8 bits of data (two hexadecimal digits).
Table 0-1 is a list of the hexadecimal digits and their binary and decimal
equivalents. Refer to this table if you need help converting numbers to
and from the hexadecimal representation.

Table 0-1
HEXADECIMAL-TO-DECIMAL CONVERSION TABLE
HEXADECIMAL DECIMAL BINARY

DIGIT VALUE VALUE
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 Otl1
8 8 1000
9 9 1001
A 10 1010
Borb 11 1011
C 12 1100
Dord i3 1101
E 14 1110
F 15 1111

Introduction to the SDK-85 Microcomputer 5

To examine the contents of memory, press the SUBST MEM or
SUBSTITUTE MEMORY key. If you get an error (the display shows
-Err) or some other unexpected display, press the RESET key and then
the SUBST MEM key. The dlsplays should show only a decimal point

after the four leftmost digits.
Now enter a four-digit address: try 2, 0, 0, 0. Note that as soon as
you enter the first digit, the four leftmost displays read

0002

Each subsequent entry causes the “2” to move one place to the left. The
two rightmost displays remain blank. Remember that all the displays
are in hexadecimal and that addresses (shown on the leftmost displays)
are four digits long whereas data entries (shown on the rightmost dis-
plays) are two digits long.

Now press the NEXT key in the lower left-hand corner. The two
rightmost displays show what is in memory location 2600 (hex). The re-
sult is arbitrary, since the 8155 RAM loses its contents when power is
removed and could start in any state whatsoever. Such a memory is said
to be volatile. If you want to see the effects of this volatility, simply
unplug the SDK-85’s power supply and repeat the examination procedure.

The following procedure allows you to examine the contents of a
memory location:

1) (if necessary) Reset the computer with the RESET key.

2) Press the SUBST MEM key.

3) Enter the address as four hexadecimal digits starting with
. the most significant digit.

4) Press the NEXT key.

Before you press the NEXT key, be sure that you have entered the
address correctly. If not, enter the correct address. If you make a mis-
take or get confused, just press RESET and get back on the right track.

PROBLEM 0-1

Examine the contents of memory location 2038 (hex).

PROBLEM 0-2

Exaimne the contents of memory location 00SB (hex). Its value should be 21.
Try disconnecting the power supply and examining this location again. The
result will be the same, since this memory location is in the nonvolatile read-
only memory,

Once you have examined the contents of a memory location, you
can examine the contents of the next location by pressing the NEXT key

