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Preface

Computational fluid dynamics, commonly known by the acronym ‘CFD’,
is undergoing significant expansion in terms of both the number of courses
offered at universities and the number of researchers active in the field. There
are a number of software packages available that solve fluid flow problems; the
market is not quite as large as the one for structural mechanics codes, in which
finite element methods are well established. The lag can be explained by the
fact that CFD problems are, in general, more difficult to solve. However, CFD
codes are slowly being accepted as design tools by industrial users. At present,
users of CFD need to be fairly knowledgeable, which requires education of
both students and working engineers. The present book is an attempt to fill
this need.

It is our belief that, to work in CFD, one needs a solid background in both
fluid mechanics and numerical analysis; significant errors have been made by
people lacking knowledge in one or the other. We therefore encourage the
reader to obtain a working knowledge of these subjects before entering into
a study of the material in this book. Because different people view numeri-
cal methods differently, and to make this work more self-contained, we have
included two chapters on basic numerical methods in this book. The book
is based on material offered by the authors in courses at Stanford Univer-
sity, the University of Erlangen-Niirnberg and the Technical University of
Hamburg-Harburg. It reflects the authors’ experience in both writing CFD
codes and using them to solve engineering problems. Many of the codes used
in the examples, from the simple ones involving rectangular grids to the ones
using non-orthogonal grids and multigrid methods, are available to interested
readers; see the information on how to access them via Internet in the ap-
pendix. These codes illustrate the methods described in the book; they can be
adapted to the solution of many fluid mechanical problems. Students should
try to modify them (e.g. to implement different boundary conditions, interpo-
lation schemes, differentiation and integration approximations, etc.). This is
important as one does not really know a method until s/he has programmed
and/or run it.

Since one of the authors (M.P.) has just recently decided to give up his pro-
fessor position to work for a provider of CFD tools, we have also included in
the Internet site a special version of a full-featured commercial CFD package
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that can be used to solve many different flow problems. This is accompanied
by a collection of prepared and solved test cases that are suitable to learn
how to use such tools most effectively. Experience with this tool will be valu-
able to anyone who has never used such tools before, as the major issues are
common to most of them. Suggestions are also given for parameter variation,
error estimation, grid quality assessment, and efficiency improvement.

The finite volume method is favored in this book, although finite difference
methods are described in what we hope is sufficient detail. Finite element
methods are not covered in detail as a number of books on that subject
already exist.

We have tried to describe the basic ideas of each topic in such a way
that they can be understood by the reader; where possible, we have avoided
lengthy mathematical analysis. Usually a general description of an idea or
method is followed by a more detailed description (including the necessary
equations) of one or two numerical schemes representative of the better meth-
ods of the type; other possible approaches and extensions are briefly de-
scribed. We have tried to emphasize common elements of methods rather
than their differences.

There is a vast literature devoted to numerical methods for fluid mechan-
ics. Even if we restrict our attention to incompressible flows, it would be
impossible to cover everything in a single work. Doing so would create con-
fusion for the reader. We have therefore covered only the methods that we
have found valuable and that are commonly used in industry in this book.
References to other methods are given, however.

We have placed considerable emphasis on the need to estimate numerical
errors; almost all examples in this book are accompanied with error analysis.
Although it is possible for a qualitatively incorrect solution of a problem to
look reasonable (it may even be a good solution of another problem), the
consequences of accepting it may be severe. On the other hand, sometimes a
relatively poor solution can be of value if treated with care. Industrial users
of commercial codes need to learn to judge the quality of the results before
believing them; we hope that this book will contribute to the awareness that
numerical solutions are always approximate.

We have tried to cover a cross-section of modern approaches, including di-
rect and large eddy simulation of turbulence, multigrid methods and parallel
computing, methods for moving grids and free surface flows, etc. Obviously,
we could not cover all these topics in detail, but we hope that the informa-
tion contained herein will provide the reader with a general knowledge of the
subject; those interested in a more detailed study of a particular topic will
find recommendations for further reading.

While we have invested every effort to avoid typing, spelling and other
errors, no doubt some remain to be found by readers. We will appreciate
your notifying us of any mistakes you might find, as well as your comments
and suggestions for improvement of future editions of the book. For that

e
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purpose, the authors’ electronic mail addresses are given below. We also hope
that colleagues whose work has not been referenced will forgive us, since any
omissions are unintentional.

We have to thank all our present and former students, colleagues, and
friends, who helped us in one way or another to finish this work; the complete
list of names is too long to list here. Names that we cannot avoid mentioning
include Drs. Ismet Demirdzi¢, Samir Muzaferija, Zeljko Lilek, Joseph Oliger,
Gene Golub, Eberhard Schreck, Volker Seidl, Kishan Shah, Fotina (Tina)
Katapodes and David Briggs. The help provided by those people who created
and made available TEX, BTEX, Linux, Xfig, Ghostscript and other tools
which made our job easier is also greatly appreciated.

Our families gave us a tremendous support during this endeavor; our
special thanks go to Anna, Robinson and Kerstin Peri¢ and Eva Ferziger.

This collaboration between two geographically distant colleagues was
made possible by grants and fellowships from the Alexander von Humboldt
Foundation and the Deutsche Forschungsgemeinschaft (German National Re-
search Organization). Without their support, this work would never have
come into existence and we cannot express sufficient thanks to them.

Milovan Perié
milovan@cd.co.uk

Joel H. Ferziger
ferziger@leland.stanford.edu
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1. Basic Concepts of Fluid Flow

1.1 Introduction

Fluids are substances whose molecular structure offers no resistance to exter-
nal shear forces: even the smallest force causes deformation of a fluid particle.
Although a significant distinction exists between liguids and gases, both types
of fluids obey the same laws of motion. In most cases of interest, a fluid can
be regarded as continuum, i.e. a continuous substance.

Fluid flow is caused by the action of externally applied forces. Common
driving forces include pressure differences, gravity, shear, rotation, and sur-
face tension. They can be classified as surface forces (e.g. the shear force due
to wind blowing above the ocean or pressure and shear forces created by a
movement of a rigid wall relative to the fluid) and body forces (e.g. gravity
and forces induced by rotation).

While all fluids behave similarly under action of forces, their macroscopic
properties differ considerably. These properties must be known if one is to
study fluid motion; the most important properties of simple fluids are the
density and viscosity. Others, such as Prandtl number, specific heat, and sur-
face tension affect fluid flows only under certain conditions, e.g. when there
are large temperature differences. Fluid properties are functions of other ther-
modynamic variables (e.g. temperature and pressure); although it is possible
to estimate some of them from statistical mechanics or kinetic theory, they
are usually obtained by laboratory measurement.

Fluid mechanics is a very broad field. A small library of books would be
required to cover all of the topics that could be included in it. In this book
we shall be interested mainly in flows of interest to mechanical engineers but
even that is a very broad area so we shall try to classify the types of problems
that may be encountered. A more mathematical, but less complete, version
of this scheme will be found in Sect. 1.8.

The speed of a flow affects its properties in a number of ways. At low
enough speeds, the inertia of the fluid may be ignored and we have creep-
ing flow. This regime is of importance in flows containing small particles
(suspensions), in flows through porous media or in narrow passages (coating
techniques, micro-devices). As the speed is increased, inertia becomes im-
portant but each fluid particle follows a smooth trajectory; the flow is then
said to be laminar. Further increases in speed may lead to instability that
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eventually produces a more random type of flow that is called turbulent; the
process of laminar-turbulent ¢ransition is an important area in its own right.
Finally, the ratio of the flow speed to the speed of sound in the fluid (the
Mach number) determines whether exchange between kinetic energy of the
motion and internal degrees of freedom needs to be considered. For small
Mach numbers, Ma < 0.3, the flow may be considered incompressible; other-
wise, it is compressible. If Ma < 1, the flow is called subsonic; when Ma > 1,
the flow is supersonic and shock waves are possible. Finally, for Ma > 5, the
compression may create high enough temperatures to change the chemical
nature of the fluid; such flows are called hypersonic. These distinctions affect
the mathematical nature of the problem and therefore the solution method.
Note that we call the flow compressible or incompressible depending on the
Mach number, even though compressibility is a property of the fluid. This
is common terminology since the flow of a compressible fluid at low Mach
number is essentially incompressible.

In many flows, the effects of viscosity are important only near walls, so
that the flow in the largest part of the domain can be considered as inviscid.
In the fluids we treat in this book, Newton’s law of viscosity is a good ap-
proximation and it will be used exclusively. Fluids obeying Newton’s law are
called Newtonian; non-Newtonian fluids are important for some engineering
applications but are not treated here.

Many other phenomena affect fluid flow. These include temperature dif-
ferences which lead to heat transfer and density differences which give rise to
buoyancy. They, and differences in concentration of solutes, may affect flows
significantly or, even be the sole cause of the flow. Phase changes (boiling,
condensation, melting and freezing), when they occur, always lead to impor-
tant modifications of the flow and give rise to multi-phase flow. Variation of
other properties such as viscosity, surface tension etc. may also play impor-
tant role in determining the nature of the flow. With only a few exceptions,
these effects will not be considered in this book.

In this chapter the basic equations governing fluid flow and associated
phenomena will be presented in several forms: (i) a coordinate-free form,
which can be specialized to various coordinate systems, (7) an integral form
for a finite control volume, which serves as starting point for an important
class of numerical methods, and (%) a differential (tensor) form in a Cartesian
reference frame, which is the basis for another important approach. The basic
conservation principles and laws used to derive these equations will only
be briefly summarized here; more detailed derivations can be found in a
number of standard texts on fluid mechanics (e.g. Bird et al., 1962; Slattery,
1972; White, 1986). It is assumed that the reader is somewhat familiar with
the physics of fluid flow and related phenomena, so we shall concentrate on
techniques for the numerical solution of the governing equations.



1.2 Conservation Principles 3

1.2 Conservation Principles

Conservation laws can be derived by considering a given quantity of matter or
control mass (CM) and its extensive properties, such as mass, momentum and
energy. This approach is used to study the dynamics of solid bodies, where the
CM (sometimes called the system) is easily identified. In fluid flows, however,
it is difficult to follow a parcel of matter. It is more convenient to deal with
the flow within a certain spatial region we call a control volume (CV), rather
than in a parcel of matter which quickly passes through the region of interest.
This method of analysis is called the control volume approach.

We shall be concerned primarily with two extensive properties, mass and
momentum. The conservation equations for these and other properties have
common terms which will be considered first.

The conservation law for an extensive property relates the rate of change
of the amount of that property in a given control mass to externally deter-
mined effects. For mass, which is neither created nor destroyed in the flows
of engineering interest, the conservation equation can be written:

dm

dt
On the other hand, momentum can be changed by the action of forces and
its conservation equation is Newton’s second law of motion:

d(mw)
=21 (1.2)
where ¢ stands for time, m for mass, v for the velocity, and f for forces acting
on the control mass.

We shall transform these laws into a control volume form that will be used
throughout this book. The fundamental variables will be intensive rather than
extensive properties; the former are properties which are independent of the
amount of matter considered. Examples are density p (mass per unit volume)
and velocity v (momentum per unit mass).

If ¢ is any conserved intensive property (for mass conservation, ¢ = 1; for
momentum conservation, ¢ = v; for conservation of a scalar, ¢ represents the
conserved property per unit mass), then the corresponding extensive property
@ can be expressed as:

=0. (1.1)

¢ = / ppd2 (1.3)
2cm
where (2cm stands for volume occupied by the CM. Using this definition,

the left hand side of each conservation equation for a control volume can be
written:!

! This equation is often called control volume equation or the Reynolds’ transport
theorem.

e P A g e e S
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d
a(—i;/pgbdﬂ:a?/p¢dQ+/p¢(v-—vb)-ndS, (1.4)

Ncm Rcv Scv

where 2cv is the CV volume, Scv is the surface enclosing CV, n is the unit
vector orthogonal to Scv and directed outwards, v is the fluid velocity and vy,
is the velocity with which the CV surface is moving. For a fixed CV, which
we shall be considering most of the time, vy, = 0 and the first derivative
on the right hand side becomes a local (partial) derivative. This equation
states that the rate of change of the amount of the property in the control
mass, &, is the rate of change of the property within the control volume plus
the net flux of it through the CV boundary due to fluid motion relative to
CV boundary. The last term is usually called the convective (or sometimes,
advective) flux of ¢ through the CV boundary. If the CV moves so that its
boundary coincides with the boundary of a control mass, then v = v}, and
this term will be zero as required.

A detailed derivation of this equation is given in in many textbooks on
fluid dynamics (e.g. in Bird et al., 1962; Fox and McDonald, 1982) and will not
be repeated here. The mass, momentum and scalar conservation equations
will be presented in the next three sections. For convenience, a fixed CV will
be considered; {2 represents the CV volume and S its surface.

1.3 Mass Conservation

The integral form of the mass conservation (continuity) equation follows di-
rectly from the control volume equation, by setting ¢ = 1:

%/de!2+/spv-nd5=0. (1.5)

By applying the Gauss’ divergence theorem to the convection term, we can
transform the surface integral into a volume integral. Allowing the control
volume to become infinitesimally small leads to a differential coordinate-free
form of the continuity equation:

%g +div (pv) =0. (1.6)
This form can be transformed into a form specific to a given coordinate
system by providing the expression for the divergence operator in that system.
Expressions for common coordinate systems such as the Cartesian, cylindrical
and spherical systems can be found in many textbooks (e.g. Bird et al., 1962);
expressions applicable to general non-orthogonal coordinate systems are given
e.g. in Truesdell (1977), Aris (1989), Sedov (1971). We present below the
Cartesian form in both tensor and expanded notation. Here and throughout
this book we shall adopt the Einstein convention that whenever the same
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index appears twice in any term, summation over the range of that index is
implied:

Op  O(pui) _Op , O(pus)  O(puy)  O(pu) _ 17
?9?+ azi_8t+ 8w+6y+az =0, (1.7)

where z; (i=1,2,3) or (z,y,2) are the Cartesian coordinates and w; or
(uz,uy,u,) are the Cartesian components of the velocity vector v. The con-
servation equations in Cartesian form are often used and this will be the case
~ in this work. Differential conservation equations in non-orthogonal coordi-
nates will be presented in Chap. 8.

1.4 Momentum Conservation

There are several ways of deriving the momentum conservation equation. One
approach is to use the control volume method described in Sect. 1.2; in this
method, one uses Egs. (1.2) and (1.4) and replaces ¢ by v, e.g. for a fixed
fluid-containing volume of space:

8
gz/npvdf2+./;pvv-nd5_z.f. (1.8)

To express the right hand side in terms of intensive properties, one has to
consider the forces which may act on the fluid in a CV:

e surface forces (pressure, normal and shear stresses, surface tension etc.);
* body forces (gravity, centrifugal and Coriolis forces, electromagnetic forces,
etc.).

The surface forces due to pressure and stresses are, from the molecular point
of view, the microscopic momentum fluxes across a surface. If these fluxes
cannot be written in terms of the properties whose conservation the equa-
tions govern (density and velocity), the system of equations is not closed;
that is there are fewer equations than dependent variables and solution is
not possible. This possibility can be avoided by making certain assumptions.
The simplest assumption is that the fluid is Newtonian; fortunately, the New-
tonian model applies to many actual fluids.

For Newtonian fluids, the stress tensor T, which is the molecular rate of
transport of momentum, can be written:

2
T=- <p+§,u,div'v) | +2uD, (1.9)

where 4 is the dynamic viscosity, | is the unit tensor, p is the static pressure
and D is the rate of strain (deformation) tensor:

s O —



