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Preface

This book has arisen directly from a short course of post-
graduate lectures delivered by the authors at Imperial College
during January 1971. The lectures were designed to convey the
main concepts of turbulence modelling, and to show what progress
had been made and what problems rémained; the book has the same
purpose.

The format of the book is also similar to that of the lec-
tures. The latter proceeded by way of projected slides, accom—
panied by a connecting oral text. The book reproduces the
majority of the slides, each with its portion of text, in a
page~by-page arrangement corresponding to the order and duration
of oral delivery. This was done for more than our own conve-
nience as authors; we believe that the reader will also benefit
from having topics brought squarely to his attention by the
frame-like action of a single page.

We have made few amendments to the text of the lecture,
apart from stylistic ones; and even here we have endeavoured to
remain closer to the style of the lecture room than that of the
textbook. This preference accords, we believe, with the nature
of the subject, which is new, in rapid growth, and still exper-
imental in respect of form. We have preferred to be suggestive
and provocative rather than comprehensive and final; for the
last two qualities are hardly attainable as yet.

Footnotes and references have been provided since the lec-
tures were delivered; but relatively little recent material
could be supplied without their swelling disproportionately,

Our thanks are due to Mr. D. Sharma for preparing the dia-
grams and to Miss M. Hudgell for typing the text. The assist-
ance of Miss M.P. Steele and Mr. P. Dale in preparing the orig-

inal slide panels is also gratefully acknowledged.
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Lecture 1
Introduction

1.1 Preliminary remarks

When industrial historians assess the notable happenings of
the 1970's they may record that this was a decade which saw a
revolution in the design of engineering equipment. The agent
of revolution is the digital computer with its ability to per-
form quickly and cheaply millions of arithmetic operations.
Already, in problems of stress distributions in solids, design-
ers turn to computer simulacra of structures for which formerly
scale models were laboriously fabricated.

This pattern is now spreading to the design of,process
equipment where plant performance depends crucially upon trans-
port and combustion processes through the fluids involved.
Already, a few secﬁions of the industry are turning to computer=-
based design-evolvement programmes; the practice seems certain
to spread. We thus foresee that by 1980 computer experiments
will largely have displaced experiments of the physical kind.

For a computer to provide realistic simulation of a flow
process, it has to be supplied with a set of instructions (the
computer program) which embodies the implications of the con-
servation laws of momentum, mass and energy, appropriate to a
fluid in motion. Computer programs with these capabilities are
now available for quite general two-dimensional flows and for
certain three~dimensional ones as well. For laminar flows,
predictions generated by these programs can, with due care, be
as reliable as any experiment.

The same is not generally true when the flow is turbuleqt;
for the laws governing the flux of momentum or heat through a
turbulent field remain to be securely established. Neverthe-
less, in the past few years new approaches have brought much
greater reliability to the calculation of turbulent flow
phenomena. In this course of lectures, our purpose is to con-

vey the essentials of these new practices.



2 Mathematical Models of Turbulence

1.2 The rationale of the turbulence-models approach

In principle, there is no need to adopt special practices
for turbulent flow; for the Navier-Stokes equations apply
equally to a turbulent motion as to a laminar one. All that is
required, one might suppose, is a computer program to solve the
equations.

But this is not a passable route at present. The reason is
that important details of turbulence are small-scale in charac-
ter; for example, eddies responsible for the decay of turbu-
lence in a gaseous flow are typically about 0.1 mm. Now to
solve the equations we must use a numerical procedure that cal-
culates the value of variables at a number of discrete points in
space. If this number were 105, which would stretch the storage
capacity of any existing computer, we could still scarcely cover
adequately one cubic centimetre of space.

Fortunately there is no need for an engineer to consider
the details of turbulence; he is usually concerned only with
its time-averaged effects, even when the mean flow is unsteady.
Indeéd, if we were given the time-dependent behaviour of a body
of flui&, we should do nothing with the data but integrate them
to extract time-averaged properties. This recognition affords
us the following means of escape: we base predictions of tur-
bulent flows on only the time-averaged properties of turbulence.
Since these vary much more gradually in space,no excessively
fine grid is needed. v

The process of time-averaging, however, causes statistical
correlations involving fluctuating velocities and temperatures
to appéar in the conservation equations. We have no direct way
of knowing the magnitudes of these terms; we must therefore
approximate or 'model' their effect in terms of quantities we
can determine. Thus, by a 'model of turbulence' we mean a set
of equations which, when solved with the mean-flow equations,
allows calculation of the relevant correlations and so simu-~

lates the behaviour of real fluids in important respects.
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1.3 Contents of the present lecture

+« The requirements of a turbulence model

« Algebraic turbulent-viscosity models

o Differential turbulent-viscosity models

s Models employing differential equations for t

e Comparison and summary

This, the first lecture of the course, will introduce the
demands that turbulence models must meet; it enumerates the
main classes of model to be considered, and makes a preliminary
comparison and assessment of them.

As the box implies, there are three main types of model,
the first two of which employ Boussinesq's (1877) suggestion
that the siressvstrain law for time-averaged turbulent flows
could be represented in the same form as that for a Newtonian
fluid in laminar motion. We shall distinguish those types of
model in which the 'turbulent viscosity' is found by way of
algebraic formulae, involving only properties of the mean-
velocity profile as unknowns, from those in which it is deter-
mined from the solution of differential equations for ome or
more properties of the turbulent motion.

The third class of model to be considered includes those
which (in the mean-momentum equations at any rate) dispense
with the notion of effective turbulent transport properties and,
instead, provide differential transport equations for the tur-

bulent fluxes themselves.
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1.4 Global or logeal accountiEELfor influences of turbulent

fluxes?

Research workers were, of course, suggesting ways of
accounting for the effects of turbulence on the mean-flow
behaviour long before it became practical to solve the partial-
differential form of the convective tranmsport equations. Thus,
for boundary-layer flows, so~called integral procedures offered
a powerful and comparatively flexible approach. But to calcu-
late turbulent flows, these procedures needed to incorporate,
implicitly or explicitly, suppositions about the global influ-
ence of turbulence on the mean-flow evolution. For example,
Head (1960) supposed that the rate at which large-scale turbu-
lent motions draw free-stream fluid into a boundary layer is
determined solely by a shape parameter of the mean velocity
profile.

However such global hypotheses are valid only over res-
tricted ranges of conditions; accuracy and width of applica-
bility cannot be achieved without solving the partial differ-
ential equations; and to solve these equations requires that
local properties of turbulence be known. The present lectures,
therefore, will be concerned exclusively with mathematical

models of turbulence which provide local information.
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1.5 The flow types of interest

Turbulence models are required for flow:

¢ remote from walls: —[[jﬁ

e adjacent to one wall:

e within ducts:
- __‘__l J;/

g BN
e Wwith recirculation:

This box provides examples of the kinds of turbulent
motion with which an engineer is commonly concerned. They are
all turbulent 'shear flows' where because of mean velocity gra-
dients, the turbulence is able to extract energy from the mean
flow; the turbulent motion is thus generally self-sustaining.

As the sketches show, the flows in question include:-
those which are remote from walls, such as the smoke plume from
an industrial stack; flows near one wall, such as that in the
vicinity of a turbine blade; and those developing within a
duct. In some applications, the fluid motion possesses a
single dominant direction with turbulent fluxes important only
at right angles to this direction. We refer to these flows as
of boundary-layer type; other things being equal, a simpler
model of turbulence suffices than for flows where recirculatory
motion is present.

Sometimes the flow is effectively two-dimensional (as in
conical diffusers or through certain types of heat exchanger);
in others (and these are in the majority) three-dimensional in-
fluences are of substantial importance. Again, it seems likely
that the lower the level of dimensionality of the flow, the less

complete need be our accounting of the turbulent motion.
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1.6 Some physical processes affected by the turbulent motion

The local turbulence structure influences the rates of:
e transport of mean momentum.

e transport of heat and chemical species.

o decay of temperature fluctuations.

e chemical reaction.

e droplet evaporation. etc.

This box mentions some of the consequences of turbulent
interaction that a model of turbulence may be called upon to
predict. The existence of a correlation between the stream-
wise and cross-stream components of fluctuating velocity gives
rise to a lateral flux of streamwise momentum. This momentum
flux may conveniently be interpreted as an additional shear
stress arising from the turbulent motion; away from the vicin-
ity of a wall, this exceeds by far the shear stress arising
from molecular viscosity. Likewise the fluxes of enthalpy and
chemical species are usually dominated by turbulence inter-
actions.

It is not only the transport processes (of heat, momentum
and matter) that are influenced by the presence of turbulence.
Rates of decay of fluctuations, and rates of homogeneous
chemical reaction and droplet vaporisation are equally affected;
and these are often of great practical importance. All these
interactions must therefore find a place in our turbulence

models.
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1.7 Some factors affecting the turbulent motion

e viscosity (e.g. the viscous sublayer)
e high Mach numbers

s combustion

e high swirl rates

o external force fields e.g. buoyancy, m.h.d. influences

In many circumstances, the local structure of the turbu-
lence can be supposed to be adequately identified by two pro-
perties; these we can take to be the local velocity and the
length scale of the turbulent motion. It is these circum—
stances to which the weight of our attention will be directed
in this course.

However, within what is usually a very thin region near a
wall, the scale and intensity of the turbulent motions are so
diminished by the adjacent boundary that the effective Reynolds
number of the eddies is quite small; small enough for laminar
viscosity to exert direct influence on the turbulence. Like-
wise, when the Mach number of the flow exceeds about 5, it
seems probable that the local structure is influenced by the
appreciable density fluctuations in the flow. We also know
that combustion or high rates of swirl may affect the local
structure, as may external forces such as buoyancy or magneto-
hydrodynamic effects.

In principle, all these effects can be embraced within the
framework of the turbulence models to be discussed in this
course of lectures. Even though research has not proceeded
far enough for quantitative certainty as yet, we can at least

perceive the patterns into which the phenomena appear to fall.
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1.8 Some desirable attributes of turbulence models

Perhaps we can best convey what is required of a turbu-
lence model by naming four attributes we should like it to

possess; they are:

e width of applicability,
e accuracy,
e economy of computer time,

e simplicity.

The designer wants a single set of equations simulating
the turbulence action to serve him over the complete range of
geometries and other parameters scanned in the search for the
best design. He wants sufficient accuracy for the designed
performance to differ negligibly from the actual; and the
total economic expenditure, both in terms of manpower and of
computing time, must be an acceptably small fraction of total
investment.

Clearly, from the above, what constitutes the 'best' model
of turbulence will differ according to the problem under con-
sideration. Moreover, the more direct knowledge we have of
the flow, the greater is the chance that a simple description
of turbulence can be made to suffice. On one matter we can be
quite definite, however: if sacrifice of simplicity and
economy does not bring tangible benefits by way of greater
accuracy and width of applicability, then the model may be

referred back to its originator for further development.
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1.9 The turbulent-viscosity concept

e Boussinesq (1877):

T 3
replaced 1 = - p u'v' by e 3% .

o W is a property of the local state of the turbulence.

e How is M determined?

Perhaps the first move towards a model of turbulence can
be attributed to Boussinesq (1877). More than ninety years
ago, he suggested that the effective turbulent shear stress,
arising from the cross-correlation of fluctuating velocities,
could be replaced by the product of the mean velocity gradient
and a quantity termed the 'turbulent viscosity'.

Unlike u, the molecular viscosity, e is not a property of
the fluid. Its value will vary from point to point in the
flow, being largely determined by the structure of the turbu-
lence at the point in question; at least, that is what we
shall presume.

The introduction of He provides a framework for comstruct-
ing a turbulence model, but it does not itself constitute a
model; for there remains the task of expressing the turbulent
viscosity in terms of known or calculable quantities. The
n2xt few pages survey the ways in which different workers have

accomplished this.
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1.10 Some algebraic formulae for i .: 1., Prandtl's mixing-

length hypothesis

du
3y

. Em, the mixing length, must be prescribed.

. - 2
¢ Proposal: ut o} zm

For boundary-layer flows, a few simple rules serve for
its prescription.

e This model provides the subject for lecture 2.

Pre—eminent among the models which employ algebraic rela-
tions for Me is Prandtl's (1925) proposal, which has become
known as the mixing-length hypothesis. For nearly-two-
dimensional boundary-layer flows, particularly those developing
over rigid boundaries, the mixing-length hypothesis combines a
good mixture of the attributes named on page 8, so good indeed
that only the best of the more comprehensive simulations of
turbulence can surpass it.

The hypothesis is that the turbulent viscosity is equal to
the local product of the density, of the magnitude of the mean
rate of strain, and of the square of a characteristic length
scale of the turbulent motion; this length scale we call the
mixing length, & . The mixing length must be prescribed algeﬁ
braically; but, in boundary-layer flows, whether near to or
remote from walls, a few simple rules usually serve for its
prescription.

At Imperial College, we have been using the model exten-
sively since 1966; and, more elegant approaches notwithstand-
ing, there are many problems where this is the model most to be
commended. For this reason we shall be devoting the next lec-

ture to an elucidation of its application and performance.
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1.11 Some algebraic formulae for M 2. von K4rmén's

similarity hypothesis

: = 2 |3u
e Proposal: pt o) lm 3y
3 32
where lm « 32 =
y ay2

e The model circumvents the need to prescribe Zm but fails

to accord with experiment except for flows near walls.

An interesting contribution was made by von Kdrmin (1930).
This, his so-called "similarity" hypothesis, may be expressed
in a form akin to the mixing-length model. His analysis went
further than Prandtl's, since it removed the necessity to pre-
scribe the mixing-length profile. Von Kdrmin's analysis
implied that Rm was the ratio of the first to the second
spatial derivatives of mean velocity.

Despite the ingenuity of von Kirmin's proposal, his for-
mula has not been extensively used. The reason is largely that
the relationship for mixing length which his method predicts is
not in agreement with measurements except in the vicinity of a
wall; and the reason for that is,; presumably, that the length
scale is not determined solely by local properties of the mean
flow, but is influenced by the properties at other locations in
the vicinity.

One shortcoming of the von Kirmdn formula is immediately
apparent when turbulent jets and mixing layers are considered.
Their velocity profiles have inflexion points, where
3%u/dy? = 0, approximately at the position of maximum shear
stress. Von Kdrm4n's formula entails infinite mixing lengths
there, and is therefore no help in computing the finite shear

stress.
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1.12 Some algebraic formulae for y : 3. 'Eddy-viscosity'

formulae

e Proposal: W =P ueyef(y/G}

Ugs Yok characteristic global velocity and length scales.
f€y/8y: prescribed function of (y/$§).
e Models of this type lack the width of applicability of the

mixing-length hypothesis.

There is a further group of algebraic formulae for turbu-
lent viscosity; their common feature is that the turbulent
viscosity is supposed to be determined by velocity and length
scales of the mean motion, u, and Y, 88 indicated above. The
term f€y/§> refers to some function of position in the shear
flow which possesses a limited degree of universality.

Various authors make different choices for u, and Yo In
external wall boundary layers, the free-stream velocity and the
displacement thickness of the boundary layer are usually
adopted (Clauser, 1954, Mellor, 1963). In flow through a pipe,
the so-called friction velocity and pipe radius are commonly
chosen (Jonsson and Sparrow, 1966). The function f€y/8) needs
to be given a different form for each type of flow. So models
of this type require the same kind of input as the mixing-
length hypothesis.

Indeed they require more ad hoc adjustment than does the
mixing-length hypothesis, when attention is shifted from one
flow to another. For example, in a wall jet, which is a
boundary layer where a jet of high-speed fluid is blown paral-
lel to the surface, the boundary-layer displacement thickness
is often negative; yet to predict the flow we do still need a
positive My So clearly one must adopt a different interpre-
tation of Yos but it is a nuisance to have to do so and there
seem to be no compensating advantages. For this reason we

shall not be considering this type of model further.
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