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PREFACE

This volume of the Encyclopedia is devoted to the subjects of rhecfogy -and flow dy-
namics of non-Newtonian fluids. Althiough related topics are treated in previous volumes,
prior subject coverage was specific to the generic flow topics of those volames. This
work attempts to provide a viified tréatment of practical rheology 'dnd mdustnal han-
dling/processing of rheologically complex fluids. Pt

Non-Newionian behavior is encountered in an overwhelming mumber of situations
throughout nature and in commercial operations. Examples where such behavior occurs
are industrial waste flows; process sturry operations; the manufacture of dies, inks, pig- -
ments, and paints; polymer and plastics synthesis and fabrication; preparation of cosmet-
ics and health care products; food processing; and cven biological phenomena such as
blood flow and coagulation. In fact, nature, along with mauakind’s capitahization of nature
in industry, offers many more examples of rheologically complex materials than thuse
described by rigorous Newtonian mechanics. Desyiite this over-sbundance of encounters,
our theoretical foundations and process design methodology are largely empirical, and
often drawn by analogy from specific fluid studies.

The present work atiempts to provide a ‘unified treatment of the sub;ects starting from
an advanced entry level. Fundamental concepts and properties of viscous flow behavior
are presented in Volumes 1. 2, §;and 6 of this series. This volume pmmdésmdy an over-
view of basic principles aud ditects detailed attention 1o stateé-of-the-art topics in han-
dling/processing viscous materials. The work is organized into three' Hections. Scction 1
contains twelve chapters aimed at phenomenological description dnd éstablishing theorct-
ical development 1 aon-Nowionian flow behavior. Discussions and modeling of flow
regimes in symmetsnic and non-symmetric flow systems are discussed. The relations be-
tween viscous behavior and transport properties are presented. Section II contains {ive
chapters addressing the topies of slippage and drag phenomena. These behaviors are ma-
jor properties but are often least understood in practical process operations. The final
section contains eighicen chapters on characterization, behavior, and processing of poly -
mers and elastomeric maierials. Polymer technology is perhaps the most advanced in
terms of our understanding of viscous flow properties, and although principles discusscd
evolved frosn the study of these materials, concepts and design methodology are general.
There arc three main themies in this section, namely (1) the relationships between the
molecular structure of the fluid and its deformation properties, (2) industrial handling
operations, including design methodology, and (3) technigues for assessing and predict-
ing the behavior of viscous matenials in industrial processing equipment.

This work represents the efforts of 44 researchers/practitioners from around the wortd.
In additicn, it reflects the opinions of scores of colleagues who provided invaluable sug-
gestions und critiques. Deepcst gratitude is extended to the contributors and to Gulf Pub-
lishing Company whose efforts are presented herein.

»

Nicholas P. Cheremisinotf
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INTRODUCTION
Rheological Classification of Fluid Behavior’

Rheology is the science of deformation and flow of materials in response 1o stress. A rheological
cquation describes or relates stress o1 deformation to flow variables of matcrials such as strain,
shear rate. and time. Fluids can be conveniently classified based on their rheological properties as
foltows [1, 2]: (i) Newtonian fluids follow the simplest rheological equation of Newton’s law of
viscosity, the stress beéing proportional to the shear rate. The flow curve (shear stress vs. shear rate)
shows a lincar relationship and passes through the origin. (b) Time-independent non-Newtonian
lutd cxhibiis a non-linear relationship between the shear stress and the shear rate, or its flow curve
exhibits a yield stress (not passing through the origin), provided its viscosity is not time dependent.
Time-independent non-Newtonian Huids have attracted more attention by rheologists than others.
More than fiftcen rheological cuiations or models have been proposed to represent the time-
independent relation as summarized by Skelland [2]. These equations employ two to five param-
eters to describe the pseudoplastic (shear thinning) or the ditatant (shear thickening) properties of
time-independent non-Newtonian fluids with or without a yield stress. (¢) Time-dependent non-



4  Flow Dynamics and Transport Phenomena

Newtonian luids display time-dependent behavior in the flow carve in addilion to the shear-rate
dependency. Therefore, the viscosttyiaf timezdependent. non-Newlonian fluids s a {function of hoth
the shear rate and the time of shearing. They are usually subdivided mto two groups, thixotropic
Muids and rheopectic fluids. The former are shear-thickening trne-dependent fluids (1) Viscoelastic
fluids possess the viscous property of a liguid and the clastic property of a solid. Thus the rheological
propertics of viscoclastic fluids arce inadeguately described by relationships between the shear stress
and the shear rate uniess the clastic properties of the stress and the stram are included: The simplest
rheological cquation for viscoclastic Buid is the Maxwell modct. which includes two rheological
purameters - the viscosity and the rigidity modulag. Various theories of viscoclasticity have resulted
in many dilferential or integral constitutive cquations relating the shear stress with shear rate,
strain, and time,

History of Thixetropy

“Thixotropy™ was introduced by Freundtich in 1928 {3]. He and his co-workers observed that
many colloidal solutions show a decreased resistance to flow upon being’ stirred or shaken and
revert to their original resistance after being allowed to stand still {4]. FI¢ suggested - that This
phenomenon was duc o the structural change of the colloidal particles  a reversible, isothermal
gel-sol transition through mechanical disturbance, This reversible, isothermal, viscosity decrease
phenomenon was caffud thixotropy. ’

‘The term “thixotropy™ has been in continuous use to the present time by many investigators,
However. Freundlich’s original definition was not uniformly adhered 0. It was sometimes inter-
preted as pscudoplastic or shear-thinning property without considering the time-dependent be-
havior. Others used it to represent the non-lincar viscoelasticity of lluids, failing (6 recognize the

“inclastic property of thixotropic Quids. C

Experimental Measurements of Thixotropy

The qualitative detection of thixotropy can be achieved experimentally. Capillary viscometers
are not suitable for the study of shear rate and time dependencics of viscosity of thixotropic fuids
duce to the varying shear rate in the flowing system. Both conc-and-plate tvpe wnd Couette-type
viscometers dare commonly used. Common proposed experiments arc as follows:

The hysteresis foop. Shear stress is monitored in response to shear-rate variation. The shear re
is lincarly increased from zero to a maximum valuc and then decreased from this maximum value
to zero. This experiment, originally employed by Green and Weltman [ 5], penerates a hysteresis
loop on the flow curve. The hysteresis loop has been used ever since as onc of the characteristic
curves for the identification of a thixotropic fluid. This experiment is modificd into three other
experiments: (a) A multiple hysteresis loop is obtained from the continuation of cydles of the shear-
rate increase and decrease {6]. The progressive brcakdown of gel-structure of the fluid induced
by shear can be observed by the gradual reduction of the arca enclosed in hystercsis loops. The
enclosed area eventually becomes zcro and the flow curve of the luid behaves as a pséudoplastic
fluid. (b) A multiple hysteresis is measured with a finite period of pause between cycles. The pause
between cyeles will cstablish the necessary. rest time required by the Ruid 1o regain its gel-sol
equilibrium condition. (¢) Another modified hysteresis laop is obtained. When the shear-rate haif
cycle reaches the maximum value, it is hekd at this rate for a period ol time before returnng to zero.

The stress-decay curve. The time-dcpendent effect on shear stress at constant shear rate is mea-
sured, witil a stcady-state shear stress is reached. This experiment, First designeéd by Pryce-Jones
with a Couette viscometer. demonstrates the time-dependency of viscosity of various thixotropic
fluids [ 7]. This experimentally observed curve is referred to as the siress-decay cuive or the torquc-
decay curve, and is another characteristic curve of thixotropy fluid. This experiment with a step
function of shear rate can be replaced by an alternate cxperiment with a muitiple-step function of
shear rates from high to low values. It results in.a scries of stress-decay curves while shear rates



