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PREFACE

This book is intended for a first course in dynamic systems and is suitable
for all engineering students regardless of discipline. It has been used at
Rensselaer Polytechnic Institute for a one-semester course taken by every
engineering student in his or her sophontore or junior year. While providing
an exposure to dynamic systems for those whose interests lie in other areas,
the material covered in this course serves as a basis for subsequent courses
such as circuits and electronics, chemical process control, feedback systems,
linear systems, vehicular dynamics and control, nuclear reactor control,
biocontrol systems, systems physiology, and introduction to public systems.
Because it covers such general topics as state variables, linearization of
nonlinear models, numerical solution for the response, transfer functions,
and feedback, this book can also be used for a general dynamic-systems
course by students who have already completed a course in an area such as
electrical circuits. machine dynamics, or chemical process dynamics. The
rationale for the book is summarized in Section 1.1.
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We assume that the reader has had differential and integral calculus and
basic college physics, including mechanics and electrical phenomena. A
course in differential equations should be taken at least concurrently. We
have kept the mathematical level somewhere between the degree of rigor
required for a mathematics book and the degree of expediency that raises
inconsistencies for the discerning student and that often results in concepts
that must be unlearned later. For example, the impulse has been treated in
a manner that is consistent with distribution theory but that is no more
difficult to grasp than the usual approach taken in introductory engineering
books. . '

The organization of the book is indicated in the table of contents, and its
scope and objectives are discussed in Section 1.5. Among the distinguishing
features are the following:

1. A wide variety of physical systems is included, with one or more chapters
on mechanical, electrical, electromechanical, thermal, and hydraulic systems.
Each type is modeled in terms of its own fundamental laws and nomenclature.

2. The formulation of state-variable equations is included from the begin-
ning, along with the more traditional input-output differential equation.
We do not introduce matrix notation until the next-to-the-last chapter,
however.

3. The technique for finding linearized models in terms of incremental
var-ables is developed early in the book and used in a number of subsequent
chapters. Incremental variables are also used to model linear systems with
time-varying parameters.

4. The significance of the various components of a system’s response—
mcluding the zero-input response, the zero-state response, and mode func-
tions—-is given more attention than is usual for a book at this level.

$. The numerical solution for the response of a system model is done in a
way that does not emphasize a particular computer language. Numerical
comparisons of the responses of nonlinear and linearized models are made,
and problems requiring a programmable calculator or digital computer for
their solution are included.

6. The use of Laplace transform techniques is deferred until after the in-
traduction of time-domain and numerical solutions. The relationships of
concepts such as the transfer function. poles and zeros, and frequency re-
sponse to the time-domain solutions are empbhasized. ‘

7. The concluding chapter presents five case studies drawn from a variety
of systems, including a sociological system.

We considered including discrete-lime systems, but we did not do so
because the length of the book would have become excessive. For this same
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reason, and because they are better suited for more advanced bools, we
do not discuss distributed and stochastic systems.

The mzjority of the material can be covered in a one-semester course, but
the book can also be used as the basis for a year-long course.- For schools
on the quarter system, most of the material could be included in a two-
quarter sequence. If necessary, any of Chapters 10, 11, or 14 to 18 can be
omitted or abbreviated without loss of continuity.

In its various versions, the mamuscript hras been used at Rensselaer since
1973 by more than 2500 students. There are 130 examples and 420 problems.
A solutions manual containing solutions to each of the problems is available.
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CHAPTER1 ———
INTRODUCTION

In this chapter we present the rationale for the book, define several terms
that will be used throughout, and describe various types of systems. The
chapter concludes with a description of the particular types of systems to be
considered and a summary of the techniques that the reader should be
able to apply after completing the book.

L1 RATIONALE

The importance of understanding and being able to determine the dynamic
response of physical systems has long been recognized. It has. been tradi-
tional in engineering education to have separate courses in’ dynamic
mechanical systems, circuit theory, chemical-process dynamics, and other
areas. Such courses develop techniques of modeling, analysis, and design for
the particular type of physical systems relevant to that specific discipline,
even though many of the techniques taught in these courses have much in

1



2 INTRODUCTION

common. This approach tends to reinforce the student’s view of such courses
as isolated entities with little in common and to foster reluctance to apply
what has been learned in one course to a new situation.

Another justification for considering a wide variety of different types of
systems in an introductory book is that-the majority of systems of practical
interest contain components of more than one type. In the design of
electronic circuits, for example, attention must be given to mechanical
structure and to dissipation of the heat generated. Hydraulic motors and
pneumatic process controllers are other examples of useful combinations of
different types of elements. Furthermore, the techniques in this book can be
applied not only to pneumatic, acoustical, and other traditional areas but
also to systems that are quite different, such as sociological, physiological,
cconomic, and transportation systems.

Because of the universal need for engineers to understand dynamic systems
and because there is a common methodology applicable to such systems
regardless of their physical origin, it makes sense to present them all together.
This book considers both the problem of obtaining a mathematical descrip-
tion of a physical system and the various analysis techniques that are widely
used.

. 1.2 ANALYSIS OF DYNAMIC SYSTEMS

Since the most frequent key word in the text is likely to be “system,” it is
appropriate to define it at the outset. A system is any collection of interacting
elements for which there are cause-and-effect relationships among the
variables. This definition is necessarily general, because it must encompass
a broad range of systems. The important feature of the definition is that
it tells us we must take interactions among the variables into account in
system modeling and analysis, rather than treating individual elements
separately. .

Our study will be devoted to dynamic systems, for which the variables are
time-dependent. In nearly all our examples, not only will the excitations and
responses vary with time but at any instant the derivatives of one or more
variables will depend on the values of the system variables at that instant.
The system’s response will normally depend on initial conditions, such as
stored energy, in addition to any external excitations.

In the process of analyzing a system, two tasks must be performed:
modeling the system and solving for the model’s response. The combination
of these steps is referred to as system analysis. _

A mathematical model, or model for short, is a description of a system in
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terms of equations. The basis fer constructing a model of a system is the
physical laws'(e.g., the conservation of energy and Newton’s laws) that the
system elements and their interconnections are known to obey.

The type of model sought will depend on both the objective of the engineer
and the tools for analysis. If a pencil-and-paper analysis with parameters
expressed in literalrather than numerical form is to be performéd, a relatively
simple model will be needed. To achieve this simplicity, the engineer should
be prepared to neglect elements that do not play a dominant role in the
system.

On the other hand, if a computer is available for carrying out simulations
of specific cases with parameters expressed in numerical form, a compre-
hensive mathematical model that includes descriptions of both primary and
secondary effects might be appropriate. The important notion is that a variety
of mathematical models are possible for a system, and the engineer must be
prepared to decide what form and complexity are most consistent with the
objectives and the available resources.

The process of using the mathematical model te determine certain features
of the system’s cause-and-effect relationships is referred to as solving the
model. For example, the responses to specific excitations may be desired
for a range of parameter values, as guides in selecting design values for those
parameters. As described in the discussion of modeling, this phase may
include the analytical solution of simple models and the computer solution
ol more complex ones. ‘

The type of equation involved in the model has a strong influence on the
extent to which analytical methods can be used. For example, nonlinear
differential equations can seldom be solved in closed form, and the solution
of partial differential equations is far more luborious than that of ordinary
differential equations. Computers can be used to generate the responses to
specific numerical cases for complex models. However, the use of a com-
puter for the solution of a complex model is not without its limitations.
Models used for computer studies shoud be chosen with the approximations
encountered in numerical integration in mind and should be relatively
insensitive to system parameters whose values are uncertain or subject to
change. Furthermore, it may be difficult to generalize resuits based only on
computer solutions that must be run for specific parameter values, excita-
tions, and initial conditions.

The engineer must not forget that the model being analyzed is only an
approximate mathematical description of the system and is not the physical
system itself. Conclusions based on equations that required a variety of
assumptions and simplifications in their development may or may not apply
to the actual system. Unfortunately, the more faithful a model is in describing
the actual system, the more difficult it is to obtain general results.
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One procedure is to use a simple model for analytical results and design
and then to use a different model to verify the design by means of computer
simulation. In very complex systems, it may be feasible to incorporate actual
hardware components into the simulation as they become available, thereby
eliminating the corresponding parts of the mathcmatical model.

1.3 CLASSIFICATION OF VARIABLES

A system is often represented by a box (traditionally called a “black box™),
as shown in Figure 1.1. The system may have several inputs, or excitations,
each of which is a function of time. Typical inputs are a force applied to a
mass, a voltage source applied to an electrical circuit, and a heat source
applied to a vessel filled with a liquid. In general discussions that are not
related to specific systems, we shall use the symbols u,(t), u,(t), ..., u,(t) to
denote the m inputs, shown by the arrows directed into the box.

[ | ’ b 1y
{5 — — 3
. System .
Uy —— Vp
L—-V—I D s
Inputs Outputs

Figure 1.1 Black-box representation of i system.

Outputs are variables that are to be calculated or measured. Typical out-
puts are the velocity of a mass. the voltage across a resistor, and the rate
at which a liquid flows through a pipe. The p outputs are represented in
Figure 1.1 by the arrows pointing away from the box representing the
system. They are denoted by the symbols v,(t), y(t), ..., y,(t). - There is a
cause-and-effect relationship between the outputs and inputs. To calculate
any one of the outputs for all ¢ > 1,, we must know the inputs for 1 > 1,
and also the accumulated effect of any previous inputs. One approach to
constructing a mathematical model is to find equations that relate the
outputs directly to the inputs by eliminating all the other variables that are
internal to the system. If we are interested only in the input-output relation-
ships, eliminating extraneous variables may seem appealing. However,
potentially important aspects of the system’s behavior may be lost by
deleting information from the model.

Another modeling technique is to introduce a set of state variables, which
generally differs from the set of outputs but which may include one or more
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of them. The state variables must be chosen so that a knowledge of their
values at any reference time ¢, and a knowledge of the inputs for all 1 > 1,
is sufficient to determine the outputs and state variables for alt 1 > 1,. An
additional requirement is that the state variables must be independent,
meaning that it must not be possible to express one state variable as an
algebraic function of the others. This approach is particularly convenient for
working with multi-input, multioutput systems and for obtaining compuier
solutions. In Figure 1.2 the representation of the system has been modified
to include the state variables denoted by the symbols ¢ (r). ¢,(r). ... 4, (1)
within the box. The state variables can account for the important aspects
of the system’s behavior, regardless of the choice of output variables.
Equations for the outputs can then be written.as algebraic functions of the
state variables, inputs, and time.

U g ot bV

U 3 o] et 13
. Gueqzs s Gn| ¢

e | Vo

Figure 1.2 General system representation showing inputs, state variables. and outputs.

Whenever it is appropriate to indicate units for the variables and para-
meters, we shall use the International System of Units (abbreviated SI, from
the French Systeme International d Unités). A list of the units use¢ in this
book appears in Appendix A.

1.4 CLASSIFICATION OF SYSTEMS

Systems are grouped according to the types of equations that are used
their mathematical models. Examples are partial differential equations with
time-varying coefficients, ordinary differential equations with consiant
coefficients, and difference equations. In this section we define and briefly
discuss ways of classifying the models, and in the next section we indicate
those categories that will be treated in this book. The classifications that we
use are listed in Table 1.1.

SPATIAL CHARACTERISTICS

A distributed svstem does not have a finite number of points at which state
variables can be defined. In contrast. a lumped system can be described by
a finite number of state variables.
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Table 1.1 Criteria for classifying systems

Criterion Classification

Spatial characteristics ' Lumped
Distributed

Continuity of the time variable Continuous
Discrete-time
Hybrid

Quantization of the dependent variable Nonquantized
Quantized

Parameter variation Fixed

, v Time-varying

Superposition property Linear

Nonlinear

To illustrate these two types of systems, consider the flexible shaft shown
in Figure 1.3(a) with one end embedded in a wall and with a torque
. applied to the other end. The angle through which a point on the surface of
the shaft is twisted depends on both its distance from the wall and the applied
torque. Hence the shaft is inherently distributed and would be modeled by a
partial differential equation. However, if we are only interested in the angle
of twist at the right end of the shaft, we may account for the flexibility of
the shaft by a rotational spring constant K and represent the effect of the
distributed mass by the single moment of inertia J. Making these approxi-
mations results in the lumped system shown in Figure 1.3(b), which has the
important property that its model is an ordinary differential equation.
Because ordinary differential equations are far easier to solve than partial
differential equations, converting from a distributed system to a lumped
approximation is often essential if the resulting model is to be solved with
the resources available.

Another example of a distributed system is an inductor that consists of
a wire wound around a core, as shown in Figure 1.4(a). If an electrical ’

Torque Torque

\ AN K
Y—o (O
(a) (b)

Figure 1.3 A torsional shaft and its lumped approximation.
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Apn A R L
) (a) (b)
Figure 1.4 An inductor and its lumped approximation.

excitation is applied across the terminals of the coil, then different values of
voltage would exist at all points along the coil, characteristic of a distributed
system. To develop a lumped circuit whose behavior as calculated at the
terminals closely approximates that of the distributed device, we might
account for the resistance of the wire by a lumped resistance R and for the
inductive effect related to the magnetic field by a single inductance L. The
resulting lumped circuit is shown in Figure 1.4(b). Note that in these two
examples (although not in all cases), the two elements in the lumped model
do not correspond to separate physical parts of the actual system. The
stiffness and moment of inertia of the flexible shaft cannot be separated into
two physical pieces, nor can the resistance and inductance of the coii.

CONTINUITY OF THE TIME VARIABLE

A second basis for classifying dynamic systems is the independent-variable
time. A continuous system is one for which the inputs, state variables, and
outputs are defined over some continuous range of i‘me (although the
signals may have discontinuities in their waveshapes and not be continuous
functions in the mathematical sense). A discrete-time system has variables
that are determined at distinct instants of time and that are either not
defined or not of interest between those instants. Continuous systems are
described by differential equations and discrete-time systems by difference
equations.

Examples of the variables associated with continuous and discrete-time
systems are shown in Figure 1.5. In fact, the discrete-time variable f,(kT)

fi(n fotk T)T

(@) (b}

Figure 1.5 Sample variables. (a) Continuous. (b) Discrete-time.



