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Preface

This book is based on lectures given at the Applied Mathematics Labora-
tory of the David Taylor Model Basin. It is devoted to the calculus of
variations, with special attention to its applications in mechanics and wave
propagation. Our aim has been to give more than a superficial account of
the subject, treating only extremal or stationary curves. In order to keep
this treatment self-contained and free of formidable mathematical diffi-
culties, we have made the necessary differentiability assumptions which are
usually satisfied in the applications of the calculus of variations to prob-
lems of nature.

We have emphasized the parametric treatment, since this method simpli-
fies the passage from the Lagrangian to the Hamiltonian point of view, or
vice versa.

The distinction between extremal and minimal curves is clearly ex-
plained, and Legendre’s condition for a minimal curve is proved. Extremal
fields and the Hilbert Invariant Integral are covered in some detail, the
essential distinction between plane problems and problems in multidi-
mensional space, so far as extremal fields are concerned, being carefully
explained.

The Weierstrass E-function is treated, and the connection between the
calculus of variations and Rayleigh quotients and the method of Rayleigh-
Ritz—so important in vibration problems—is clearly shown. The analysis
of wave propagation gives the analogue for earthquake waves of Snell’s
law of refraction. The book closes with a short account of multiple integral
problems and a discussion of the useful maximum-minimum principle,
which we owe to Courant.

Care has been taken to make the book self-contained, and details of
the proofs of the basic mathematical theorems are provided.

Washington, D. C. Francis D, MURNAGHAN
May, 1962



Contents

Preface
1. The Lagrangian Function and the Parametric Integrand. . . ... .. 1
2. Extremal Curves; The Euler-Lagrange Equation.... ..... ... .. 7
3. Lagrangian Functions Which are Livearinz,. . ... .......... 13
4. The Legendre Condition for & Minimal Curve. .. ..... .. ... .. .. 17
5. Proof of the Legendre Conditionn. ... . ... .. ... ............ ... 21
6. Constrained Problems; The Hamilton Canonical Equations. . . . . 26
7. The Reciprocity between L and H; The Transversality Con-
ditions. . ... ... 31
8. Extremal Fields; The Hilbert Invariant Integral . ... ... .. . ... 36
9. The Weierstrass E-Function; Positively Regular Problems. . . . .. 41
10. A Simple Example of the Construction of an Extremal Field;
Rayleigh Quotients and the Method of Rayleigh-Ritz. ... ... ... 46
11. The Principle of Maupertuis; The Propagation of Waves. . . . ... 52
12. Problems Whose Lagrangian Functions Involve Derivatives of
Higher Order than the First. .. .. .. ... .. ... ... .. .. . ... ... 60
13. Multiple-Integral Problems of the Calculus of Variations. .. . ... . 70
14. Constrained Problems; Characteristic Numbers. . . ... ... .. ... 75
15. Multiple-Integral Probleras Whose Lagrangian Functions Involve
Derivatives of Higher Order than the First. . ... . ... ...... ... 80
16. The Courant Maximum-Minimum Principle. . .. ... . ..... ... 87
Bibliography . . ... ... .. 94

Index . .. . ... . 95



t—08

The Lagrangian Function

and the Parametric Integrand

The problems of the calculus of variations which we shall treat in these
pages belong to one or the other of two types. The simplest example of
the first of these two types may be stated as follows:

Given two points in a plane, or in 3-dimensional Euclidean space, does
there exist a curve of shortest length connecting these two points, and if so,
is this curve unambiguously determinate? We shall refer to the problems
of the calculus of variations which belong to the type to which this problem
belongs as problems of Type 1. An example of the second of the two types
may be stated as follows: ’

Given a closed curve in 3-dimensional Euclidean space, does there exist
in this space, a surface, having this curve as its boundary, whose area is
least, and if so, is this surface unambiguously determinate? We shall refer
to the problems of the calculus of variations which belong to the type to
which this problem belongs as problems of Type 2.

Problems of the calculus of variations of Type 1 are curve problems, in
which the curves we are concerned with may be plane curves or spate
curves or, indeed, curves in a space of any number of dimensions. The
problem of the motion of a mechanical system may be conveniently stated
as a problem of Type 1 of the calculus of variations. If the mechanical
system has n degrees of freedom, n = 1, 2, --- , we write its generalized
coordinates as a column, or n X 1, matrix z, so that the jth coordinate,
j=1,--+,n,isdenoted by z’. The velocity n X 1 matrix z, is the derivative
of z with respect to the time ¢ so that the jth element of z,isz/’,j = 1,-- - ,
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2 Lectures on Applied Mathematics

n, and the Lagrangian function L = T — V of the system is a function of
the two n X 1 matrices z and z., and also, if the mechanical system is
nonconservative, of the time ¢£. Here, T is the kinetic energy and V is the
potential energy of the mechanical system. We assume that L is a con-
tinuous function of the matrices z, ., and also, if the system is non-
conservative, of {; by the statement that L is a continuous function of the
two matrices z and z. we mean that L is a continuous function of the 2n
elements z’, z*,j = 1, --- ,n,k = 1, --- , n, of these matrices. If, then,
z = z(t),a < t < b, is any smooth curve C in the n-dimensional coordinate
space of the mechanical system, so that = and z, are, along C, continuous
functions of ¢ over the interval @ € ¢t < b, the Lagrangian function 7 is,
along C, a continuous function of ¢ over the mterval a <t b and we
may consider the integral
b
-[La

This integral is a number whose value depends on and is unambiguously
determined by the curve C, just as the length of a rectifiable curve in a
plane, or in 3-dimensional Euclidean space, depends on and is unambigu-
ously determined by the curve. The motion of the mechanical system is
such that its paths, i.e., the curves x = z(f), et g b, which describe
this motion, are such tlmt the integral 7 = |, * L dt has, when evaluated
along any one of these paths, a stationary value (without being, necessarily,
a minimum or a maximum). Thus the integral 7 plays, for the mechanical
system, the role played by the length of a rectifiable curve in the intro-
ductory example we have given of problems of Type 1 of the calculus of
variations, but there is one essential difference: I has, when evaluated along
a path of the mechanical system, merely a stationary value while the
length integral is actually a minimum when the curve of integration gives
it a stationary value. In this connection we observe that the time-coordinate
space of a mechanical system is what is called a numerical, rather than a
metrical, space; the concept of distance between two of its points is not
defined, so that it does not make sense to speak of nearby points of this
coordinate space nor of the length of a curve in it. We may, however,
endow this coordinate space with a metric and we shall do this by assigning
to it the ordinary Euclidean metric in accordance with which the distance

R .
between any two points | i ] and I g [ 18 the magnitude of the matrix
! H

vV —t
 —z|

In order to treat most simply the problem of Type 1 of the calculus of
variations which is furnished by the motion of a mechanical system it is
convenient (particularly when the system is nonconservative so that the




The Calculus of Variations 3

Lagrangian function L involves explicitly not only the twon X 1 matrices
z and z, but also the time variable ¢) to place this variable on an equal
footing with the n elements of the coordinate matrix z. To do this we
replace our n-dimensional coordinate space by a (n + 1)-dimensional
time-coordinate space. We denote n 4+ 1 by N and introduce the N X 1

matrix X = whose first element is ¢ and whose remaining n elements

are those of the » X 1 matrix . A smooth curve in the N-dimensional
time-coordinate space is furnished by a formula X = X(r),a < 7 < 8,
where 7 is any convenient independent variable, or parameter, of which
the ¥ X 1 matrix X(r) is a continuously differentiable function. If we
choose 7 to be ¢ itself, the first of the N equations implied by the formula
X = X(r) is simply ¢ = r but, in general, this equation will be replaced
by ¢t = t(r), where {(7) is either smooth, i.e., possesses a continuous
derivative, or is at least piecewise-smooth over the interval « < r < 8.
By the words piecewise-smooth, we mean that ¢(7), while continuous over
a £ 7 < B, may fail to be differentiable at a finite number of interior
points of this interval; at each of these points it possesses a right-hand and
a left-hand derivative but these derivatives are not equal. At all points
where ¢, is defined it is, by hypothesis, continuous. We make one further
restriction on the function { = #(7); namely, we assume that £, > 0 at all
points where ¢, is defined, and this implies that at each of the finite number
of points at which ¢, is possibly undefined the right-hand and left-hand
derivatives of ¢ with respect to r are nonnegative since the right-hand
derivative, for example, of { at + = ,, say, is the limit, as  — 0 through
positive values, of £,(7, 4+ 8). The reason for this restriction is as follows:
We regard ¢, which was the parameter or independent variable used by
Lagrange, as a master, or control, parameter and we do not wish any
other parameter r to sometimes increase and sometimes decrease as ¢
increases. Thus we do not wish ¢, to change sign over the interval a < r < 8.
We could satisfy this wish by requiring that ¢, < 0 instead of ¢, > 0, but,
since a mere change of sign of 7 changes the inequality ¢, < 0 into ¢, > 0
there is no real loss of generality in requiring that ¢, be >0 at all the points
of the interval & < r < 8 at which it is defined. We assume, further, that
the number of points, if any, of the interval « < < 8 at which¢, = 0 is
finite.

When we pass from the master parameter ¢ to any other allowable
parameter 7 by means of a formula ¢t = #(7), « € 7 < B, the integrand of
the integral I is changed from the Lagrangian function L to the produet
of Lbyt, :

b 8
1=fu Ldz=[ Lt dr; a =Ha), b= (B
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We denote this new integrand by F and we refer to ¥ as the parametric
integrand, the original integrand L being termed the nonparametric, or
Lagrangian, integrand of our problem of Type 1 of the calculus of variations.
Under an allowable change of parameter » — +’ furnished by a formula
r = r(7), d < 7 < #, L remains unaffected while ¢, — ¢,- = t,7 , where
T is positive save, possibly, at a finite number of points of the interval
o < v < B Since the value of an integral is insensitive to changes of the
integrand at a finite number of points, we shall refer to .- as positive
(rather than nonnegative). Then the transformation r — 7’ of the inde-
pendent variable, or parameter, induces the transformation ¥ — F' = Fr,
of the integrand of our integral 7. This change of the integrand is necessary
to ensure the invariance, or lack of dependence upon the particular pa-
rameter adopted, of the integral I itself. F is a function of the two N X 1
matrices X and X, and, under the change of parameter r — 7/, the second
of these is multiplied by the positive factor r,- while the first is insensitive
to this change of parameter. Thus, k being any positive number, the
parametric integrand F(X, X,) is such that

F(X,kX,) = kF(X, X,)

We express this important quality of the parametric integrand F by the
statement that F is a positively homogeneous function, of degree 1, of
the N X 1 matrix X, .

ExamrLe

Denoting the rectangular Cartesian coordinates of a point in three-
dimensional Euclidean space by (¢, 2, z*), the formula that furnishes the
arc-length I of any smooth curve in this space is

1= [0+ @r+ea- [ La

where L = {1 4+ (z")® + (z*)}}. Under the change of parameter ¢t — =
this appears in the form

I=fﬂFdr

where F = Lt = {(t)* + (z)’ + (2. Thus F is the ma.gmtude,
(X,*X.)}, of the 3 X 1 matrix



The Calculus of Variations 5

Observe that F, while a positively homogeneous function, of degree 1, of
X, . is not a homogeneous function, of degree 1, of X, ; when X, is multiplied
by a negative number %, F is multiplied by —k = |k|.

We shall assume from now on that the Lagrangian function L is a con-
tinuously differentiable function of the N X 1 matrix X and of the n X 1
matrix z, . The derivative of L with respect to the n X 1 velocity matrix
z:is & 1 X n matrix which is known as the Lagrangian momentum matrix
and which is denoted by p. Similarly the derivative of the parametric
integrand F, which is a continuously differentiable function of the two
N X 1 matrices X and X, , with respect to the N X 1 matrix X, ,isal X N
matrix P, which we term the parametric momentum matrix. In both of
these differentiations the N X 1 matrix X is supposed to be held fixed.
The first element ¢, of X, appears in both the factors,

L=uxhpu(x? and ¢

of F and so
Py=F, =Lt + L
Now
so that
Py, =L — pz,

The remaining elements of X, , namely, the elements of z, , appear only in
the first factor L of F and so

Liy-it,, j=2---,N,

-t = Pi—1

— . 1
= Dij—1 L
In words: The first element of the 1 X N parametric matrix P is found
by subtracting from the Lagrangian function Z, the product of the n X 1
velocity matrix z, by the 1 X n Lagrangian momentum matrix p; and the
remaining N — 1 = n elements of the parametric momentum matrix are
those of the Lagrangian momentum matrix.

ExERcIse 1

Show that the elements of the parametric momentum matrix are posi-
tively homogeneous functions, of degree zero, of the N X 1 matrix X, .
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(Hint: Differentiate the relation F(X, kX,) = kF(X, X,) with respect to
X..)

EXERCISE 2
Show that PX, = F. (Hint: Differentiate the relation F(X, kX,) =
kF(X, X,) with respect to k£ and then set £ = 1.)

Exercise 3

Show that, if L = 7T'— V, where T is a homogeneous function of degree
2 of the n X 1 velocity matrix 2., and V does not involve z,, then P; =
—(T+ V) (Hint: p = T, , px. = 2T.)



Extremal Curves;

The Euler-Lagrange Equation

The Lagrangian function L of a problem of Type 1 of the calculus of
variations is a function of the N X 1 matrix X and of the n X 1 matrix
z. . We introduce the (N + n) X 1 = (2n 4+ 1) X 1 matrix z whose first
N elements are those of X and whose last n elements are those of z., and
we regard the elements of z as the coordinates of a point in a space of
2n +1 dimensions. This space, which is known as the state space of the
mechanical system whose Lagrangian funection is L, is, like the time-
coordinate space of the system, a numerical rather than a metrical space.
We endow this numerical state-space with a Euclidean metric and we
consider a region, i.e., an open, connected (27 + 1) - dimensional domain
D, in this (2n + 1) - dimensional state-space over which L = L(z) is,
by hypothesis, a continuously differentiable function of z. If X = X(¢),
a < t < b, is any smooth, or piecewise-smooth, curve C in the time-co-
ordinate space, each point of C at which C is smooth furnishes a point of
the state-space, the first N elements of the corresponding matrix z beiag
those of X (¢) and the last n elements of z being those of z,. The various
points of the state-space which we obtain in this way constitute a curve I’
which we term the image of C in the state-space. We shall confine our
attention to those piecewise-smooth curves C in the time-coordinate space
whose images T in the state-space are covered by the region D over which
I = L(z2) is, by hypothesis, a continuously differentiable function of z.

When our problem, of Type 1, of the calculus of variations is preserted
parametrically, our integral I appears as

8
I =f F(X, X,) dr

7



8 Lectures on Applied Mathematics

the curve C in the N-dimensional time-coordinate space along which I is
evaluated being furnished by equations of the form

X=X("), ag 7B

The point z of our (2n + 1)-dimensional state-space, which is furnished by
any point of C at which C is smooth, has as its first N coordinates the N
elements of X(r) and as its last n coordinates the n mutual ratios of the
N elements of X,(r), it being assumed that X,(r) is not the zero N X 1
matrix save, possibly, at a finite number of points of the interval a € = < 8.
Thus 2 is independent of the particular parameter chosen to describe the
curve C of integration. The parametric integrand F(X, X,) is a positively
homogeneous function of degree 1 of the N X 1 matrix X, , and the value
of the integral I is independent of the parameter adopted to describe C.

In order to gain some idea as to how the integral 7 varies when the curve
C along which it is evaluated is varied, we consider the following 1-pa-
rameter family of piecewise-smooth curves

C.: X(r,8) = X(r) + &f(7); e TP I8

Here s is the parameter which names the various curves of the 1-pa-
rameter family, and we suppose that s varies over a closed interval which is
centered at 8 = 0. We observe that C, reduces to C when 8 = 0, and we
express this fact by the statement that we have imbedded C in the 1-pa-
rameter family of curvesC, . f(7) is any convenient N X 1 matrix which is
piecewise-smooth over @ € r < 8 and which reduces to the zero N X 1
matrix when r = o and when r = 8, sp that all the curves of our 1-parame-
ter family have the same end-points. We suppose that the various images
T, , in the state-space, of the curves C, of our 1-parameter family are all
covered by the region D of our state-space over which L is, by hypothesis,
a continuously differentiable function of 2. Since

Fy=1tLxr; Py=L—pz, P;=pj,,
| j=2 -, N

it follows that F is, over D, a continuously differentiable function of the
2N X 1 matrix Z = l § whose first N elements are those of X and whose

last N elements are those of X, . When I is evaluated along any curve C,
of our 1-parameter family, its value is a function of s which is furnished
by the formula '

8
1) = [ PX() + o), Xle) + i) dir
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I(s) is, for each value of s in the interval —5 <& < §, a differentiable
function of s, its derivative being

109) = [ Fe(X() + (), Xolo) + e b

Y]
+ [ P(X(r) + af(r), X(r) + &:(#))fi(7) dr

We denote by &7 the differential of I(s) at s = 0 and we term &7 the vari-
ation of I. Thus 87 is the product of I,(0) by ds, where ds is an arbitrary
number (which we may take to be 1). Similarly, we denote by éX the
differential, with respect to s, of X(r, 8) at s = 0, and by 4X, the differ-
ential, with respect to 8, of X.(r, 8) at 8 = 0 so that

80X = ds-f(7); X, = d8'f'(1')
We observe that
(GX)Q- = 6Xf

and we express this result by the statement that the order of variation and
differentiation with respect to r is, when these operations are applied to
X(r, 8), immaterial. In this notation, then, we have

8
oI = f {Fx(X(7), X.(7))6X 4+ P(X(7), X,(7))8X,} dr

In order to simplify this expression we observe that Fx(X(7), X,(7)) is
continuous over a £ v < B save, possibly, for a finite number of points,
namely, the points which furnish the points of C at wlnch z. is not defined.
Thus the 1 X N matrix function

G(r) = f Fx(X(r), X(r)) dr

is defined and is continuous at all points of the interval a € 7 € 8. If
T = 7 i8 a point of the interval ¢ € 7 < B at which z: is not defined,
both G(m: — 0) and G(m + 0) exist and are equal, their common value
being G(r,). Furthermore, at those points of C at which z, is defined,
G, = Fyx so that dG@ = dr-G, = dr Fx. Thus the matrix product
Fx(X(7), X,(r))éX may be integrated by parts to yield

8
[ Fex (), Kr)0) a7 = @) [~ [ (GG} ar

and, since §X = ds -f(7) is zero, by hypothesis, at 7 = a and at r = 8,
this reduces to — f {G(8X),}dr. Hence, since §Xr = (8X),, 8] appears as

of = f (P - G)(5X),} dr
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It is clear that 87 will be zero for all allowable choices of f(7) if the 1 X N
matnx P — @ is constant along C; indeed, if this is the case,
I {P @) (8X) }d-r is of the form

f (6X7), & = ZA X’

where A;,j= 1, --- , N, is constant, and this is zero, since X’ = f(r)ds,
j=1,---,N, iszero, by hypothesis, at r = « and at r = 8. This sufficient
condition for 8 to be zero, for all allowable choices of f(7), is also neces-
sary. To see this we observe that 6/ may be written in the form
I} ,{ (P — G — A)(6X).}dr, where A is any constant I X N matrix, and
we consider the 1 X N matrix function, H(z) = [.(P — G@ — A)dr. It
is clear that H (a) = 0, and we may determine A, by means of the formula
B—-—a)A = f,(P G)dr, so that H(8) = 0. H (7) is piecewise-smooth
over a £ 7 £ B, its derivative at any point r of this interval, which furnishes
a point of C at which C is smooth, being P G — A. Hence we may take
as our N X 1 matrix f(7) the transpose H*(7) of H(7), and, when we do
this, (3X),= ds-(P — G — A)* at all the points of C at which C is smooth.
Thus

8
61=dsf (P—@G—A)P -G — A)*} dr

is the product by ds of the integral along C of the squared magnitude of the
1 X N matrix P — G — A, and so, for 47 to be zero, P — @ — A must be
zero at all the points of the interval @ < = < 8 at which it is continuous.
Thus we have the following important result:

The necessary and sufficient condition that 37, when evaluated along C,
be zero for all allowable choices of the N X 1 matrix f(7),isthat P = G + 4
at all the points of C' at which C is smooth, the 1 X N matrix A being
constant along C.

Since G(r) is differentiable, with derivative Fx , at all the points of the
interval & 7 < B which furnish smooth points of C it follows that at all
smooth points of C, _

P1'=FZ

This equation is known as the Euler-Lagrange equation for problems of
Type 1 of the calculus of variations. We term any piecewise-smooth curve
along which it holds an extremal curve of ¥ or of the Lagrangian function
L. The laws of mechanics for systems which possess a potential energy
function may be stated as folows:

The paths, or curves in the time-coordinate space, traced by the me-
chanical system are extremal curves of the Lagrangian function L, or,
equivalently, of the parametric integrand F.
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In differentiating the relation P = G + A, in order to obtain the Euler-
Lagrange equation P, = Fx , we have lost the fact that A is constant along
C, since the relation P,= Fx would hold if A were merely piecewise-
constant along C. If 7; is a point of the interval @ € = < 8 which furnishes
a point of C at which z, is not defined, we know that G(ry — 0) = G(7. +0)
and this implies that P(7; — 0) = P(7, + 0). The parametric momentum
matrix P(r) is not defined at = but, on assigning to it at r, the common
value of P(r; — 0) and P(r1 + 0), we see that it is defined and continuous
at all the points of the extremal curve C. This is a remarkable fact since
the velocity matrix . is not defined at the points of C at which C fails to
be smooth. The last n coordinates of P are those of the Lagrangian mo-
mentum matrix p = L,, which we may regard as a function of z,, the
N X 1 matrix X being held fixed. Let us denote by L., the n X 1 matrix
which is the transpose p* of the Lagrangian momentum matrix p and let
us suppose that L., is, over the region D of our (2n + 1)-dimensional
state-space, a continuously differentiable function of the n X 1 velocity
matrix z.. Then the Jacobian matrix L,,e., of p* = L,,+ with respect to
2, is & symmetric n X n matrix of which the element in the jth row and
kth column is L, .t j, & = 1, -+ -, n. If this matrix is nonsingular over
D, the relation p = L,, defines, over D, z, as a function of X and p, and so
the relation p(m ~— 0) = p(r, + 0), which is a consequence of the relation
P(r, — 0) = P(r1 + 0), forces the equality z.(r, — 0) = z;(m;1 + 0).In
words:

Any extremal curve C of L is, when the n-dimensional matrix L,,.., exists
and is continuous and nonsingular over D, not merely piecewise-smooth
but actually smooth, z, existing and being continuous at all the points of C.

If we assume, in addition, that the n X 1 matrix L., is, over D, a con-
tinuously differentiable function of the (2n 4+ 1) X 1 matrix z = lxXI and

]
not merely of the n X 1 matrix z., then the theory of implicit functions
assures us that the function x:(X, p) of X and p which is defined implicitly
by the formula L., = p* is a continuously differentiable function of the

(2n 4+ 1) X 1 matrix lﬁ: ' . Since this (27 4+ 1) X 1 matrix is continuously

differentiable along C, it follows that z, is continuously differentiable along
C so that z. exists and is continuous at all the points of C. In words:

Any extremal curve C of L is, when the n X (2n + 1) matrix L,, ., exists
and is continuous over D (its n-dimensional submatrix L.,s;, being non-
singular over D) not merely smooth but possessed of continuous curvature,
z:: being defined and continuous at all the points of C.

Along C the parametric momentum matrix P is continuously differ-
entiable, its derivative being furnished by the Euler-Lagrange equation,
P, = Fz. The last n of the equations furnished by this 1 X N matrix
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equation may be written as p; = L. or, equivalently, on taking the trans-
pose of this 1 X n matrix equation, as

Ls.’s,ivu + L-,‘xXt = Lige
This n X 1 matrix equation, which furnishes z::, along any extremal
curve of L, as a function of the (2n + 1) X 1 matrixz = I ZX ', is the Euler-

t
Lagrange equation for extremals which possess continuous curvature. We
shall from now on suppose that L possesses the following two properties
which guarantee that all its extremals possess continuous curvature:

(1) L., exists and is continuous over D.
(2) L,,es, is nonsingular over D.
ExErcISE 1

Show that if F or, equivalently, L does not involve any given one of the
elements X’ say, of X then the corresponding element P; of the parametric
momentum matrix is constant along any extremal curve C of F.

ExERrcIse 2

Show that the principle of conservation of energy holds for any me-
chanical system whose Lagrangian function does not involve ¢ explicitly.
(Hint: Py = —(T 4+ V).)

NoTr

In view of the result of this exercise, & mechanical system whose La-
grangian function does not involve ¢ explicitly is termed conservative.



Lagrangian Functions

Which Are Linear in x,

When defining an extremal curve C of a given Lagrangian function L we
imbedded C, which we assumed at the beginning to be merely piecewise-
smooth, in a 1-parameter family of curves

X(r,8) =X(r) +8f(r), a<7<B, —8K38K5

where f(r) is any convenient N X 1 matrix which is piecewise-smooth over
a € 7 < B and which vanishes at 7 = a and at » = 8. We found out later
that if L satisfies some not very restrictive conditions, C must, if it is to
qualify as an extremal curve of L, be smooth and, in addition, possess
continuous curvature. Despite this fact, it is convenient to permit the
comparison curves X = X(r, 8),a < 7 < B, — 6< 8 < 4, to be only
piecewise-smooth so that f( ) may fail to be differentiable at a finite number
of points of the interval « < » < 8. We do not impose additional restric-
tions upon our extremal curve if we imbed it in a family, X = X(o, 8),
a £ 7 < B, —8 < 8 < §, which does not involve the parameter s linearly,
provided that the N X 1 matrix function X (r, 8) is such that X, = (8X),
or, equivalently, that the two mixed second-order derivatives X,, and
X.r exist and are equal save, possibly, for a finite number of points of the
interval @ < 7 < 8. This will certainly be the case if these derivatives
exist and are continuous over the rectangle a < = < 8, —é < 8 < 3, with
the possible exception of a finite number of values of r. We may also imbed
our extremsl curve C in a k - parameter family where & is any integer > 1.
In this case sis a & X 1 matrix, the parameter matrix of the family, and X, ,

18



