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Preface

The AAECC Symposia Series was started in 1983 by Alain Poli (Toulouse), who,
together with R. Desq, D. Lazard, and P. Camion, organized the first conference.
Originally the acronym AAECC meant “Applied Algebra and Error-Correcting
Codes”. Over the years its meaning has shifted to “Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes”, reflecting the growing importance of
complexity in both decoding algorithms and computational algebra.

AAECC aims to encourage cross-fertilization between algebraic methods and
their applications in computing and communications. The algebraic orientation
is towards finite fields, complexity, polynomials, and graphs. The applications
orientation is towards both theoretical and practical error-correction coding, and,
since AAECC 13 (Hawaii, 1999), towards cryptography. AAECC was the first
symposium with papers connecting Grébner bases with E-C codes. The balance
between theoretical and practical is intended to shift regularly; at AAECC-14
the focus was on the theoretical side.

The main subjects covered were:

— Codes: iterative decoding, decoding methods, block codes, code construction.
— Codes and algebra: algebraic curves, Grobner bases, and AG codes.

— Algebra: rings and fields, polynomials.

— Codes and combinatorics: graphs and matrices, designs, arithmetic.

— Cryptography.

~ Computational algebra: algebraic algorithms.

— Sequences for communications.

Six invited speakers covered the areas outlined:

— Robert Calderbank, “Combinatorics, Quantum Computers, and Cellular
Phones”

— James Massey, “The Ubiquity of Reed-Muller Codes”

— Graham Norton, “Grébner Bases over a Principal Ideal Ring”

— Vera Pless, “Self-dual Codes — Theme and Variations”

— Amin Shokrollahi, “Design of Differential Space-Time Codes Using Group
Theory”

— Madhu Sudan, “Ideal Error-Correcting Codes: Unifying Algebraic and
Number-Theoretic Algorithms”.

Except for AAECC-1 (Discrete Mathematics 56, 1985) and AAECC-7 (Dis-
crete Applied Mathematics 33, 1991), the proceedings of all the symposia have
been published in Springer-Verlag's Lecture Notes in Computer Science (Vols.
228, 229, 307, 356, 357, 508, 539, 673, 948, 1255, 1719).

It is a policy of AAECC to maintain a high scientific standard, comparable
to that of a journal. This has been made possible thanks to the many refer-
ees involved. Each submitted paper was evaluated by at least two international
researchers.



V1 Preface

AAECC-14 received and refereed 61 submissions. Of these, 1 was withdrawn,
36 were selected for publication in these proceedings, while 7 additional works
contributed to the symposium as oral presentations. Unrefereed talks were pre-
sented in a “Recent Results” session.

The symposium was organized by Serdar Boztag, Tom Hgholdt, Kathy Ho-
radam, Igor E. Shparlinski, and Branka Vucetic, with the help of Asha Baliga,
Pride Conference Management (Juliann Smith), and the Department of Math-
ematics, RMIT University. It was sponsored by the Australian Mathematical
Society.

We express our thanks to the staff of Springer-Verlag, especially Alfred Hof-
mann and Anna Kramer, for their help in the preparation of these proceedings.

August 2001 Serdar Boztag and Igor E. Shparlinski
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The Ubiquity of Reed-Muller Codes

James L. Massey

ETH-Ziirich and Lund University
Trondhjemsgade 3 2TH, DK-2100 Copenhagen East
JamesMassey@compuserve.com

Abstract. It is argued that the nearly fifty-year-old Reed-Muller codes
underlie a surprisingly large number of algebraic problems in coding and
cryptography. This thesis is supported by examples that include some
new results such as the construction of a new class of constant-weight
cyclic codes with a remarkably simple decoding algorithm and a much
simplified derivation of the well-known upper bound on the linear com-
plexity of the running key produced by a nonlinearly filtered maximal-
length shift-register.

1 Introduction

The Reed-Muller codes, which were actually discovered by Muller [1], were the
first nontrivial class of multiple-error-correcting codes. Reed [2] gave a simple
majority-logic decoding algorithm for these binary codes that corrects all errors
guaranteed correctable by their minimum distance; he also gave an insightful
description of these codes that has been adopted by most later researchers and
that we will also follow here.

Nearly 50 years have passed since the discovery of the Reed-Muller codes.
It is our belief that when one digs deeply into almost any algebraic problem
in coding theory or cryptography, one finds these venerable codes (or closely
related codes) lying at the bottom. We illustrate this “ubiquity” of the Reed-
Muller codes in what follows with a number of examples that include some new
results.

In Section 2, we describe the two matrices whose properties underlie the
construction and theory of the Reed-Muller codes. The codes themselves are
introduced in Section 3. In Section 4 we show how the Reed-Muller codes have
been used in a natural way to measure the nonlinearity of a binary function of
m binary variables, a problem that arises frequently in cryptography. In Section
5 we use Reed-Muller coding concepts to construct a new class of constant-
weight cyclic codes that have an astonishingly simple decoding algorithm. The
cyclic Reed-Muller codes are introduced in Section 6 where we also describe an
“unconventional” encoder for these codes. This encoder is seen in Section 7 to
be the same as the running-key generator for a stream cipher of the type called
a nonlinearly filtered maximal-length shift register, which leads to an extremely
simple derivation of a well-known upper bound on the linear complexity of the
resulting running key. We conclude with some remarks in Section 8.

S. Boztag and LE. Shparlinski (Eds.): AAECC-14, LNCS 2227, pp. 1-12, 2001.
© Springer-Verlag Berlin Heidelberg 2001
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J.L. Massey

Two Useful Matrices

In this section we describe two matrices whose properties will be exploited in
the sequel.

Let M,, denote the 2™ x 2™ binary matrix in which the entries in row

i + 1 are the coefficients of (1 + z)* in order of ascending powers of z for i =
0,1,2,...,2™ — 1. For m = 3, this matrix is

10000000
11000000
10100000
11110000
10001000
11001100
10101010
[11111111]]

M3=

Some Properties of M,,,:

1.

The i-th row of My, is the i-th row of Pascal’s triangle with entries reduced
modulo 2. Equivalently, each row after the first is obtained by adding the
previous row to its own shift right by one position.

. The Hamming weight of row i + 1, i.e., the number of nonzero coefficients

in (1 + z)*, is equal to the Hamming weight Wa(i) of the radix-two repre-
sentation of the integer i for i =0,1,2,...,2™ — 1, cf. Lemma 1 in [3].

. The matrix My, is its own inverse, cf. [4].
. The sum of any selection of rows of the matrix M,,, has Hamming weight at

least that of the uppermost row included in the sum, cf. Theorem 1.1 in [3]-

Of special interest to us here will be the submatrix A,, of M,, consisting of

the m rows with Hamming weight 2™~!, For m = 3, this matrix is

a; 11110000
As3=|az| =111001100
ag 10101010
where here and hereafter we denote the rows of A,, as aj, ag, ..., am.

Some Properties of A,,:

1.

The j-th column of A,,, when read downwards with its entries considered
as integers, contains the radix-two representation of the integer 2™ — j for
ji=1,2,...,2™

. The i*® row a; of A,,, when treated as the function table of a binary-valued

function of m binary variables in the manner that the entry in the 3B col-

umn is the value of the function f(z;,z.,... »Zm) When z1,x,. .., z,, con-
sidered as integers is the radix-two representation of the integer 2™ — j,
corresponds to the function f(zy,z2,...,%n,) = z; for i = 1,2,...,m and
i=12,...,2™

. Cyclic shifting the rows of A,,, in any way (i.e., allowing different numbers

of shifts for each row) is equivalent to a permutation of the columns of A,,.
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4. Every m x 2™ binary matrix whose columns are all different can be obtained
from A,, by a permutation of the columns.

3 Reed-Muller Codes

Following Reed’s notation [2] for the Reed-Muller codes, we use juxtaposition
of row vectors to denote their term-by-term product, which we will refer to as
the Hadamard product of these row vectors. For instance, for m = 3, aja; =
(10100000] and ajazas = [10000000]. We also write ay to denote the
all-one row vector of length 2™,

Let RM(m, 1), where 1 < u < m, denote the u*P-order Reed-Muller code of
length n = 2™. RM(m, i) can be defined as the linear binary code for which
the matrix G¥,, which has as rows ag, aj, ... a,, together with all Hadamard

products of a;, ay, ... a,, taken u or fewer at a time, is a generator matrix. For
instance, the second-order Reed-Muller code RM(3, 2) has the generator matrix
[ap ] f11111111]
a) 11110000
ag 11001100
Gi=| a3 |=|10101010
ajas 11000000
ajag 10100000
| azay | _10001000J

It is also convenient to define the 0**-order Reed-Muller code RM(m,0) as the
binary linear code with generator matrix G, = [ag). For instance for m = 3,

G=[11111111],

The following proposition is a direct consequence of Properties 3 and 4 of
the matrix M,,,.

Proposition 1. The Reed-Muller code RM(m, p ) of length n = 2™, where 0 <
p < m, has dimension k = Y_t_ () and minimum distance d = 2™~ #. More-
over, its dual code is the Reed-Muller code RM(m,m — 1 — ©).

1

4 Measuring Nonlinearity

It is often the case in cryptography that one wishes to find a binary-valued func-
tion f(xy,%9,...,Tm) of m binary variables that is “highly nonlinear”. Rueppel
[5) showed that the Reed-Muller codes can be used to measure the amount of
nonlinearity in a very natural way. His approach is based on the following propo-
sition, which is an immediate consequence of Property 2 of the matrix A,, and

of the facts that
1 __ | a0
ah=[ 2]

and that ag is the function table of the constant function 1.
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Proposition 2. The codewords in the first-order Reed-Muller code of length 2™,
RM(m,1), correspond to the function tables of all linear and affine functions
of m binary variables when the entry in the j*® position is considered as the
value of the function f(z1,z9,...,Zm) where z1,zs,...,T,, give the radiz-two
representation of the integer 2™ — j for j = 1,2,...,2™.

Rueppel, cf. pp. 127-129 in [5], exploited the content of Proposition 2 to assert
that the best linear or affine approximation to a binary function f(zy,z2,...,Zm)
with function table y = [y1 Yo ... Yom ] has as its function table the codeword in
RM(m, 1) closest (in the Hamming metric) to y. If e is the number of errors in
this best approximation, i.e., the Hamming distance from this closest codeword
to y, then /2™ is the error rate of this best linear or affine approximation to
(1,22, .., Tm)-

Sometimes in cryptography one knows only that the function to be approx-
imated is one of a set of ¢t functions. In this case, Rueppel suggested taking
the best linear or affine approximation to be the function corresponding to the
codeword in RM(m, 1) at the smallest average Hamming distance to the func-
tion tables y1,y2,...,y: and to use the smallness of the average error rate as the
measure of goodness. As an example of this method, Rueppel showed that the
best linear or affine approximation to the most significant input bit of “S-box”
Ss of the Data Encryption Standard (DES) [6] from the four different output
functions f(zi,xs,...,z1¢) determined by the two “control bits” for this S-Box
is the affine function 1+ z +z2 + 23+ z4 and has an error rate of only 12 /64 or
18.8%. It is hardly surprising that, seven years later, Matsui [7] built his “linear
cryptanalysis” attack against DES on this “linear weakness” in S-box Ss.

5 Easily Decodable Constant-Weight Cyclic Codes

There are many ways to combine binary vectors to obtain another binary vector
in addition to summing and to taking their Hadamard product. One of the most
interesting ways when the number of vectors is odd is by majority combining in
each bit position. For instance, majority combining of the three rows in

a 11110000
As;=|a|={11001100
ag 10101010

gives the row vector
v3=[11101000].

The sequence v,, obtained by majority combining the rows of A,, was in-
troduced by Stiffler (8] as one period of a periodic “ranging sequence” with the
property that, when corrupted by additive noise, it could be synchronized by
serial processing with a single correlator much faster than could any previously
proposed ranging sequence of the same period. We adopt a coding viewpoint
here and, for odd m at least 3, take v,, and its 2™ — 1 cyclic shifts to be the
codewords in a binary cyclic constant-weight code, which we denote by S,, and
call a Stiffler code.



The Ubiquity of Reed-Muller Codes 5

Proposition 3. For every odd m at least 3, the Stiffler code S,, is a cyclic
constant-weight binary code with length n = 2™ having n codewords of weight

w = 2™"1 and minimum distance d = 2((,,,"1_1)1/2)'

For instance, the n = 8 codewords

[11101000],[01110100],[00111010],[00011101],
[10001110],{01000111],[10100011},[11010001]

[
|
in S3 have weight w = 4 and are easily checked to have minimum distance
d= 2(?) = 4. Because the codewords in S,, form a single cyclic equivalence
class, the code has a well-defined distance distribution. The distance distribution
for Sz is Dg = 1, D4 = 5 and Dg = 2 where D; is the number of codewords at
distance 7 from a fixed codeword.

Before proving Proposition 3, it behooves us to say why the Stiffler codes are
interesting. From a distance viewpoint, they are certainly much inferior to the
first-order Reed-Muller code RM(m, 1) which have n = 2™, dimension ¥ = m+1
(and thus 2n codewords), and minimum distance d = 2™~1. The saving grace
of the Stiffler codes is that they can be decoded up to their minimum distance
much more simply than even the first-order Reed-Muller codes.

To prove Proposition 3, we first note that row a; of A,, affects the major-
ity combining that produces v,, only in those 2((m"i—1)1 /2) columns where the
remaining m — 1 rows of A, contain an equal number of zeroes and ones. Com-
plementing row a; of A, and then majority combining with the remaining rows
would thus produce a new row vector at distance 2((m"l"1)1 /2) from v,,—but this
complementing of the first row of A,, without changing the remaining rows is
equivalent to cyclic shifting all rows of A,,, by 2™~ positions so that this new
row vector is the cyclic shift of v,, by 2™~ positions and is thus also a codeword
in S,,. It follows that the minimum distance of S,,, cannot exceed 2(("'":)1 /2).
We complete the proof of Proposition 3 by showing that the following decod-

ing algorithm for S,, corrects all patterns of (( m"l_l)l /2) — 1 or fewer errors and

either corrects or detects every pattern of ((m"i_l)l /2) errors, which implies that

the minimum distance cannot be less than 2((m":_l)1 /2). We first note, however,

m-1
(m-1)/2

positions, i.e., in all 2((1"":)1 /2) positions where a; affects the majority com-

that every row of A,,, say row a;, agrees with v,,, in exactly 2™~ 4 (

bining and in exactly half of the remaining 2™ — 2(("1":)1 /2) positions. We
note also that by the decimation by 2 of a vector of even length, say r =
[7'1 ToT3T4...T201 'rgL], is meant the vector [7‘1 T3 ...72_1T27T4... ’I”2L]
whose two subvectors [7'1 T3 ... T2L_1] and [7‘2 T4...To L] are called the phases
of this decimation by 2 of r.
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Decoding algorithm for S,,:

Let r = [r; ry ... 7= | be the binary received vector.

Step 0: Set t =m and F =r.

Step 1: If the Hamming distance from a,, = [1 010...1 O] to T is less than
n/2 = 2™~1 or greater than n/2 = 2™, set §; to 0 or 1, respectively. If this
distance is equal to n/2 = 2™~1, announce a detected error and stop.

Step 2:1f i = 1, stop and announce the decoding decision as the right cyclic shift
of Vi by 8 = §:2™71 + 6,22 + ... 4+ §,, positions.

Step 3: If 6; = 1, shift T cyclically left by one position.

Step 4: Replace T by its decimation by 2, decrease i by 1, then return to Step 1.

Ezample of Decoding for S :
Suppose that r = [1 100011 1] is the received vector.

We begin by setting i =3 and = [11000111].

Because the Hamming distance from az = [1 010101 0] to F is 5, which
exceeds n/2 = 4, we set 83 = 1 and then shift ¥ cyclically to the left by one
position to obtain ¥ = [1 000111 1]. We then decimate ¥ by 2 to obtain
F= [1 011001 1], after which we decrease ¢ to 2.

Because the Hamming distance from aj to ¥ is 3, which is less than n/2 = 4,
we set §; = 0. We then decimate ¥ by 2 to obtain F = [1101010 1], after
which we decrease i to 1.

Because the Hamming distance from aj to F is 7, which exceeds n/2 =4, we
set §; = 1.

We now announce the decoding decision as the right shift of v,,, by § =
401 + 262 + 43 = 5 positions, i.e., as the codeword [0 100011 1], which we
note is at Hamming distance 1 from the received word so that we have corrected
an apparent single error.

To justify this decoding algorithm, which is an adaptation to the decoding prob-
lem for S,,, of the algorithm given by Stiffler 8] for synchronization of the periodic
ranging sequence with pattern v,, within one period, we argue as follows:
Suppose that the transmitted codeword is the right cyclic shift of v,,, by an
even number of bit positions. Because a,, is unchanged by a right cyclic shift by
an even number of bit positions, a,, will agree with the transmitted codeword in

the same number of bit positions as it agrees with v,,, i.e., in 2™~ + ((m":)l /2)

m-1 /2) — 1 or fewer errors occur, a,, will agree with

m—1)
the transmitted codeword in more than n/2 = 2™~! positions-and in at least
n/2 = 2™ positions if exactly ((m'"_"l)l /2) errors occur. Suppose conversely that
the transmitted codeword is the right cyclic shift of Vo, by an odd number of
bit positions. Because a,, is complemented by a right cyclic shift by an odd
number of bit positions, a,, will disagree with the transmitted codeword in the

same number of bit positions as it agrees with v, i.e., in 2™~ 1 4+ ((m"fl)l /2)
m—1

bit positions. Thus, if ((m_l) /2) — 1 or fewer errors occur, a,, will disagree with
the transmitted codeword in more than n/2 = 2™~1 positions-and in at least
n/2 = 2™~1 positions if exactly ((m":)l /2) errors occur. It follows that the value

bit positions. Thus, if ((



