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Preface

CCL (Construction of Computational Logics and later Constraints in Com-
putational Logic) is the name of an ESPRIT working group which met re-
gularly from 1992 to 1999 (see http://www.ps.uni-sb.de/ccl/). It united
research teams from Germany, France, Spain, and Israel, and was managed
by the company COSYTEC.

In its final few years, the main emphasis of the working group was on
constraints — techniques to solve them and combine them and applications
ranging from industrial applications to logic programming and automated
deduction. At the end of the working group, in fall 1999, we organized a
summer school, intending to summarize the main advances achieved in the
field during the previous 7 years. The present book contains the (revised)
lecture notes of this school. It contains six chapters, each of which was written
by some member(s) of the working group, covering the various aspects of
constraints in computational logic. We intend it to be read by non specialists,
though a prior knowledge in first-order logic and programming is probably
necessary.

Constraints provide a declarative way of representing infinite sets of data.
As we (attempt to) demonstrate in this book, they are well suited for the
combination of different logical or programming paradigms. This is known
since the 1980s for constraint logic programming, but has been combined with
functional programming in more recent years; a chapter (by M. Rodriguez-
Artalejo) is devoted to the combination of constraints, logic, and functional
programming.

The use of constraints in automated deduction is more recent and has
turned out to be very successful, moving the control from the meta-level to
the constraints, which are now first-class objects. This allows us to keep a
history of the reasons why deductions were possible, hence restricting further
deductions. A chapter of this book (by H. Ganzinger and R. Nieuwenhuis) is
devoted to constraints and theorem proving.

Constraints are not only a nice mathematical construction. The chapter
(by H. Simonis) on industrial applications shows the important recent deve-
lopments of constraint solving in real life applications, for instance scheduling,
decision making, and optimization.
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Combining constraints (or combining decision procedures) has emerged
during the last few years as an important issue in theorem proving and ve-
rification. Constraints turn out to be an adequate formalism for combining
efficient techniques on each particular domain, thus yielding algorithms for
mixed domains. There is now a biannual workshop on these topics, of which
the proceedings are published in the LNAI series. The chapter on Combining
Constraints Solving (by F. Baader and K. Schulz) introduces the subject and
surveys the results.

Before these four chapters on applications of constraint solving, the in-
troductory chapter (by J.-P. Jouannaud and R. Treinen) provides a general
introduction to constraint solving. The chapter on constraint solving on terms
{by H. Comon and C. Kirchner) introduces the constraint solving techniques
which are used in, e.g. applications to automated deduction.

Every chapter includes an important bibliography, to which the reader is
referred for more information.

We wish to thank the reviewers of these notes, who helped us improve the
quality of this volume. We also thank the European Union who supported
this work for 6 years and made possible the meeting in Gif.

January 2001 Hubert Comon
Claude Marché
Ralf Treinen
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1 Constraints and Constraint Solving;:
An Introduction

Jean-Pierre Jouannaud! and Ralf Treinen!*

Laboratoire de Recherche en Informatique, Université Paris-Sud, Orsay, France

1.1 Introduction

The central idea of constraints is to compute with descriptions of data in-
stead of to compute with data items. Generally speaking, a constraint-based
computation mechanism (in a broad sense, this includes for instance deduc-
tion calculi and grammar formalisms) can be seen as a two-tired architecture,
consisting of

o A language of data descriptions, and means to compute with data descrip-
tions. Predicate logic is, for reasons that will be explained in this lecture,
the natural choice as a framework for expressing data descriptions, that
is constraints.

e A computation formalism which operates on constraints by a well-defined
set of operations. The choice of this set of operations typically is a com-
promise between what is desirable for the computation mechanism, and
what is feasible for the constraint system.

In this introductory lecture we will try to explain basic concepts of con-
straint-based formalisms in an informal manner. In-depth treatment is dele-
gated to the lectures dedicated to particular subjects and to the literature.

This lecture is organised as follows: We start with a small tour of constraint-
based formalisms comprising constraint logic programming, constraints in
automated deduction, constraint satisfaction problems, constrained gram-
mars in computational linguistics, constraint-based program analysis, and
constraints in model checking. In this first section, we will employ a some-
what naive view of constraint systems since we will assume that we have
complete and efficient means to manipulate descriptions of data (that is,
constraints). This allows to cleanly separate calculus and constraints, which
can be considered as an ideal situation.

In the following sections we will see that, in reality, things are not that
simple. In Section 1.3 we will investigate a particular family of constraint
systems, so-called feature constraints, in some depth. It will turn out that
complete procedures to compute with constraints may be too costly and that
we may have to refine our calculus to accommodate for incomplete constraint

* Both authors supported by the ESPRIT working group CCL-11, ref. WG # 22457.

H. Comon, C. Marché, and R. Treinen (Eds.): CCL’99, LNCS 2002, pp. 1-46, 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 J.-P. Jouannaud and R. Treinen

handling. Section 1.4 will present such a refinement for constraint logic pro-
gramming. In Section 1.5, finally, we will address the question of how the
basic algorithms to compute with constraints can be implemented in the
same programming calculus than the one that uses these algorithms.

1.2 A First Approach to Constraint Based Calculi

1.2.1 First-Order Logic as a Language

The role of this section is to give the basics of first-order logic viewed as a
language for expressing relations over symbolic data items. It can be skipped
by those readers aware of these elementary notions.

A term is built from variables, denoted by upper-case letters X, Y, Z, etc.
(following the tradition of logic programming) or by lower-case letters z, y, z,
etc. (following the tradition of mathematical logic), and function symbols of
a given arity, usually denoted by words of lower-case letters as f, a, plus. We
assume a sufficient supply of function symbols of any arity. Examples of terms
are a, g(a, X), f(g(X,Y), X) and f(g{a,b),a). The number of arguments of
a function symbol in a term must be equal to its given arity. Terms without
variables like a or f(g(a,b),a) are called ground, they are the data items of
the logic language. The set of function symbols is called the signature of the
language of terms.

A substitution is a mapping from variables to terms. Substitutions are
usually denoted by Greek letters like o, 7. Since it is usually sufficient to
consider mappings that move only a finite number of variables, substitutions
can be written as in 0 = {X — a,Y > b} and 7 = {X — Z}, where it is
understood that all variables map to themselves unless mentioned otherwise.
The application of a substitution to a term is written in postfix notation,
and yields another term, for instance f(g(X,Y),X)o = f(g(a,b),a) and
f(X,Y)T = f(Z,Y). The application of a substitution to a term ¢ yields
an instance of t (hence a ground instance if the term obtained is ground).
One of the basic ideas of logic is that a term denotes the set of its ground
instances, hence is a description of a set of data items.

Different terms may have common ground instances, that is, the two sets
of data items that they describe may have a non-empty intersection. When
this is the case, the two terms are said to be unifiable. For an example,
f(X,g(Y)) and f(g(Z), Z) are unifiable, since they have f(g(g(a)), g(a)) as a
common ground instance. The substitution 7 = {X + g(g(a)),Y — a,Z —
g(a)} is called a unifier of these two terms. Does there exist a term whose
set of ground instances is the intersection of the sets of ground instances
of two unifiable terms s and t? The answer is affirmative, and the most
general instance of s and t is obtained by instantiating any of them by their
most general unifier or mgu. In the above example, the mgu is 0 = {X —
9(9(Y)),Z — g(Y)}. It should be clear that any unifier 7 is an instance of
the mgu, by the substitution 7/ = {Y + a} in our example. This is captured
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by writing the composition of substitutions in diagrammatic order: T = o7’.
Renaming the variables of the most general instance does not change its set
of ground instances, we say that the most general instance, and the most
general unifier as well, are defined up to renaming of variables. It should be
clear that we can unify n terms t,... ,t, as well. In practice, we often need
to unify sequences 3 and % of terms, that is, find a most general unifier ¢ such
that s10 = ty0,... ,s,0 =t,,0.

So far, we have considered finite terms only. In practice, as we will see
later, it is often convenient or necessary to consider infinite terms as well.
Examples of infinite terms are

9(a,9(a, g(a,.. . g(a,...))))
9(a, g(h(a), g(h(h(a)), ... g(h(. .. (h(a)),...)))))

The above discussion for finite terms remains valid for infinite rational terms,
that is, infinite terms having a finite number of subterms. In our example of
infinite terms, the first is regular while the second is not. An alternative
characterisation of regular terms is that they can be recognised by finite tree
automata. Regular terms can therefore be described finitely, in many ways, in
particular by graphs whose nodes are labelled by the symbols of the signature.
Apart from its complexity, unification of infinite regular terms enjoys similar
properties as unification of finite terms.

An atom is built from terms and predicate symbols of a given arity, usually
also denoted by words of lower-case letters. There is no risk of confusion
with function symbols, since terms and atoms are of two different kinds.
We assume a sufficient supply of predicate symbols of any arity. Examples
are connect(X,Y,join(a,b)) or append(nil,cons(a,nil),cons(a,nil)), the latter
is called closed since it contains no variable.

Formulae are built from atoms by using the binary logical connectives
A, V and =, the unary connective —, the logical constants True and False,
the existential quantifier 3 and the universal quantifier V. Several consecutive
universal or existential quantifications are grouped together. An example of
a formula is VXY 3Z plus(X, Z, succ(Y)). Clauses are particular formulae of
the form VX By V...V B,V -A;...V -A,,, where m > 0,n > 0, and X
denotes the sequence of variables occurring in the formula. The atoms B;
are said to be positive, and the A; negative. The universal quantification VX
will usually be implicit, and parentheses are often omitted. The clause may
equivalently be written (A; A...AA,,) = (B1 V...V B,), using conjunctions
and implication, or simply By,...,B,, + Aj,..., By, a notation inherited
from Logic Programming. Clauses with at most one positive atom are called
Horn clauses, the positive atom is called its head, and the set of negative ones
form its body. A Horn clause without body is called a fact, and one without
head a query.

To know more: More on unification of terms and automata techniques is to
be found in the chapter Constraint Solving on Terms. See also [JK91] for
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a modern approach to unification and [CDG*99] on automata techniques.
The basic logic notations can be found in many text book covering logical
methods, for instance [BN98§].

1.2.2 From Logic Programming to Constrained Logic
Programming

Historically, the need of constraints arose from Logic Programming (LP), one
of the classical formalisms following the paradigm of declarative programming.
Let us recall the basics of logic programming before we show how constraints
make LP an even more natural and efficient declarative language. A program
is a sequence of definite Horn clauses, that is, Horn clauses with a non-empty
head. The declarative semantics of a logic program P is the least set Mp of
ground atoms such that if B « A,,..., A, is a ground instance of a program
clause of P and if A;,... ,A, € Mp then B € Mp. Such a least set does
always exist for Horn clauses (but not for arbitrary clauses).

Here is an example of logic program:

arc(a,b).
arc(b,c).
arc(c,d).
arc(c,e).
path(X,X).
path(X,Y) « arc(X,Z),path(Z,Y).

The idea of this program is that ground terms a, b, c, etc. are nodes of a
graph, arc defines the edges of the graph, and path(X,Y) whether there is a
directed path from X to Y.

While functional or imperative programs execute when provided with
input data, logic programs execute when provided with queries, that is, a
conjunction of atoms, also called a goal. Asking whether there is an arc from
c to e is done by the query —arc(c, e), which we could also write +— arc(c, e).
Knowing that it is a query, we will simply write it arc(c,e). The answer to
this query should be affirmative, and this can simply be found by searching
the program facts. In contrast, the answer to the query arc(c, X) should be
all possible nodes X to which there is an arc originating in c. Here, we need
to non-deterministically unify the query with the program facts. Finally, the
answer to the query path(X,e) should be all nodes X from which there is a
path ending in e. Here, we need to reflect the declarative semantics of our
program in the search mechanism by transforming the query until we fall into
the previous case. This is done by the following rule called resolution:
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. Pi(ty), Pa(f2), ... Pa(ts)
Resolution) . O (P, Paliac - s Paltd)
where Pi(5) « Qi(Fy),...,Qm(fn) is a program
clause not sharing any variable with the query
Pi(f)),... ,P.(,) and o is the most general unifier
of 5 and £;.

This rule contains two fundamentally different non-determinisms: the
choice of the atom to which resolution is applied is don’t-care (it does not
matter for the completeness of the search procedure which atom we choose
to resolve on), while the choice of the program clause is don’t-know (we have
to try all possible clauses). This non-determinism is dealt with externally:
choosing an atom in the query, we have in principle to execute all possible se-
quences of resolutions steps. Along every execution sequence we construct the
sequence of substitutions computed so far. If such a computation sequence
terminates in an empty query, then we say that the computation succeeds
and that the computed substitution is an answer substitution, otherwise it
fails.

In pure LP, all data items are represented as ground terms, and unification
is the fundamental method of combining descriptions of data items. If data
types like natural numbers are to be used in LP they have to be encoded as
terms, and operations on numbers have to be expressed as LP predicates. Let
us, for example, extend our example of paths in graphs to weighted graphs:

plus(0,X.X).

plus(s(X),Y,s(2)) « plus(X,Y,2).

arc(a,b,s(0)).

arc(b,c,s(s(0))).

arc{(c,d,s(0)).

arc(c,e,s(0)).

path(X,X,0).

path(X,Y,L) « arc(X,Z,M),path(Z,Y,N),plus(M,N,L).

With this program, the goal path(a,c, L) will succeed with answer substi-
tution {L — s(s(s(0)))}. However, computation of the goal plus(X, s(0), X)
will not terminate. The problem is that, although searching solutions by enu-
merating all possible computation paths is complete in the limit, this gives
us in general not a complete method for detecting the absence of solutions
(not to speak of its terrible inefficiency). What we would like here is to have
numbers as a primitive data type in LP.

Another problem with pure LP is that, even with terms as data structures,
we might want to have more expressiveness for describing terms, and be able,
for instance, to formulate the query “is there a path of weight 10 starting in
a and ending in a node different from ¢”? Our approach to use terms with
variables as descriptions of ground terms is obviously not sufficient here.
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Constraint Logic Programming (CLP) offers a solution to these deficien-
cies of LP. The basic idea is to disentangle the resolution rule, by separating
the process of replacing an atom of the query by the body of a program
clause from the other process of unifying the data descriptions. For this, we
need to consider a new syntactic entity, namely equations between terms.
These equalities must be distinguished from possibly already existing equa-
lity atoms, since their use will be quite different. In addition, this will allow
us to restrict our syntax for atoms to predicate symbols applied to different
variables, the value of these variables being recorded via the equalities. A
Horn clause is now of the form

B(—Al,.‘. ,An,C

where B and the A; are atoms and c is a conjunction of equations usually

written again as a set. Our example of weighted graphs could now look like
this:

plus(X,Y,Z2) « X=0, Y=Z.
plus(X,Y,2) « plus(X’,Y,Z2’), X=s(X’), Z=s(Z’).
arc(X,Y,Z) <« X=a, Y=b, Z=s(0).
arc(X,Y,Z) <« X=b, Y=c, Z=s(s(0)).
arc(X,Y,Z) +« X=c, Y=d, Z=s(0).
arc(X,Y,2) ¢« X=c, Y=e, Z=s(0).
(.._

path(X,Y,L) X=Y, L=0.
path(X,Y,L) « arc(X,Z,M), path(Z,Y,N), plus(M,N,L).

In this new context, queries are called configurations. A configuration
consists of a list of atoms followed by a list of equations. We can rewrite our
resolution rule as:

Py (X1), Py(X), ..., Pu(Xp), c
QI(YI))'-~ an( ) P2(X2) Pn(Xn)acvd
where Py(X;) « Q(11),... ,Qm( Y.n),d is a pro-
gram clause not sharing any variable with the confi-
guration Py(X,),..., Pa(X,),cexcept X;, and cAd
is satisfiable.

Unification has disappeared from the resolution rule: it is replaced by
constructing the conjunction of the two equation systems and checking their
satisfiability. Note that in the constrained resolution rule the parameters X;
of the predicate P; are required to be the same lists of variables in the query
and in the program clause, this will have to be achieved by renaming the
variables in the program clause when necessary.

Semantically, an equation X = s must be understood as the set of values
(for the variable X) which are the ground instances of the term s. When
making a conjunction X = s A X = t, we intersect these two sets of values,
and therefore, the set of solutions is the same as that of X = most—general —

(Resolution-2)
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instance(s,t), provided s and t are unifiable. This is why we need to check for
satisfiability in our new rule. This satisfiability test will of course be delegated
to the old unification algorithm, which is seen here as an “equation solver”
which is put aside. Furthermore, we could allow more freedom in the rule by
writing in the conclusion of the rule any equations system that is equivalent
to ¢ A d. This gives the freedom of whether to leave the constraint ¢ A d as it
is, or to replace it by some simpler “solved form” (see the chapter Constraint
Solving on Terms for possible definitions of solved forms).

Execution of our program is now essentially the same as before, we just
have separated matters. An important observation is that we have only used
the following properties of descriptions of terms:

e we can intersect their denotation (by building the conjunction of the
associated equalities)

¢ we can decide the emptiness of the intersection of their denotations (by
unification).

The crucial abstraction step is now: We obtain CLP when we replace equation
systems of terms by any system of description of data with the same two
properties as above. For example, we could replace the Presburger language
for integers used in our last example by the usual integer arithmetic:

arc(X,Y,2) <« X=a, Y=b, Z=t1.

arc(X,Y,Z) <« X=b, Y=c, Z=2.

arc(X,Y,Z) <+« X=c, Y=d, Z=2.

arc(X,Y,Z) <« X=c, Y=e, Z=2.

path(X,Y,L) « X=Y, L=0.

path(X,Y,L) < arc(X,Z,M), path(Z,Y,N), L = M + N.

To know more: An introduction to Logic Programming from a theoretic point
of view is to be found in [Apt90].

1.2.3 Constraint Systems (First Version)

We are now ready for a first, naive version of constraint systems. First, we
use predicate logic for syntax and semantics of constraints since it provides
the following features which are important for most of the constraint-based
formalisms:

1. first-order variables to denote values, these variables will be shared with
the formalism that uses the constraints (for instance a programming lan-
guage),

2. conjunction as the primary means to combine constraints, since conjunc-
tion of formulas corresponds exactly to the intersection of their respective
denotation,
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3. existential quantification to express locality of variables. It is existen-

tial, in contrast to universal, quantification that matters here since the
constraint-based mechanisms that we consider are based on satisfiebility
of descriptions.

Hence, a first definition of a constraint system (we will refine this definition

in Section 1.4.1) could be as follows:

A constraint system C consists of

¢ A language Lc of first-order logic, that is a collection of function symbols

and of predicate symbols together with their respective arities. The ato-
mic formulae built over this language are called the atomic constraints of
C.

a subset of the set of first-order formulae of L¢, called the set of con-
straints of C, containing all atomic constraints, and closed under conjun-
ction, existential quantification and renaming of bound variables. Very
often, the set of constraints is the minimal set containing the atomic con-
straints and with the above properties, in which case we call it the set of
basic constraints of L¢.

a first-order structure Ac of the language L,

an algorithm to decide whether a constraint is satisfiable in A¢c or not.

Some examples of constraint systems are:

. Herbrand: This is the constraint system used in LP when seen as instance

of the CLP scheme. Its language is given by an infinite supply of function
symbols and equality as the only predicate. The set of constraints is the
set of basic constraints whose atomic constraints are the equality atoms,
the structure is the structure of ground terms, where function symbols are
just constructors of ground terms and equality is completely syntactic,
and the algorithm for testing satisfiability is the unification algorithm
(usually attributed to Herbrand).

. Herbrand over rational terms: This is the constraint system introduced by

Colmerauer in PROLOG II. It is the same as previously, but the structure
is the set of ground atoms built from rational terms. The algorithm for
testing satisfiability is due to Huet.

. Herbrand with inequations: This is another extension of Herbrand where

constraints are existentially quantified systems of equations and inequa-
tions. Decidability of satisfiability of constraints has been shown by Alain
Colmerauer. This constraint system was the basis of PROLOG IL

. Presburger arithmetic: The language of Presburger arithmetic consists of

a constant 0, a unary function s, and a binary operator +. Constraints are
the basic constraints, interpreted in the usual way over natural numbers.
There is a number of standard methods to decide satisfiability of these
constraints. The set of constraints can be extended to the full set of
first-order formulas. There are many ways to show decidability of the



