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Preface

This book introduces much of the mathematics relevant to electromag-
netics and then applies that mathematics to some typical problems. Orthogo-

nal functions, Green’s functions, and Fourier transforms are presented in

_ the first three chapters. The equations of electromagnetics in simple and
non-simple media are introduced in Chapter 4. The normal modes and

Green’s functions for Laplace’s and Helmholtz’s equations in cartesian,
cylindrical, and spherical coordinate systems are presented in Chapter 5.’

Finally, wave propagation in simple and non-simple media in unbounded and
bounded space is treated in the last two chapters.
ln The problems are an integral part of the text and expand upon the
aterial in each chapter. The answers to all of the problems are given so
that the student can determine immediately the correctness of a solution.
In addition, many of the problems in the first part of the book are chosen so
that they later appear as parts of the solutions to more complicated problems
in the latter part of the book.

The material in this text was developed at the University of Arizona and
was originally used to supplement several of the graduate courses in electro-
magnetics. However, the material is suitable for a beginning graduate course
in electromagnetics as well as a specialized course for seniors. It was presented
. to both seniors and beginning graduate students in electrical engineering at the

ix



X Preface

University of Texas at Arlington and was found to be satisfactory except
that the pace was considerably slower with the seniors. The book is also
suitable for independent study by students as well as being useful as a
reference or supplement with courses in electromagnetics and applied mathe-
matics.

In conclusion, the author wishes to express his appreciation to Dr.
Andrew E. Salis of the University of Texas at Arlington for the opportunity
to use this material in several courses.

D.C.S.
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Orthogonal Functions
and Introductory
Mqthematics

1.1 Introduction to Orthogonal Functions
and Fourier Series

The concept of orthogcnal functions is necessary for the solution of most
problems in applied physics and engineering. These functions appear as
solutions of the Sturm-Liouville equation which is one of the most basic
equations in engineering. This equation will be discussed later after a few
introductory remarks are made about Fourier series. The concept involved
in the orthogonality of functions is but an extension of the concept of the
orthogonality of vectors in n-dimensional space. For instance, let us define
a vector

f= i] X8,
i=1

where a, is the usual unit vector in the i-direction and x, is the amplitude of
the vector component of f in the i-direction. In three-dimensional space, n
is 3, etc. If one wishes to evaluate x,, this can be accomplished quite readily
because of the orthogonality of the chosen coordinate system with the con-
comitant orthogonality of the unit vectors. Thus,

Li=j

f-aj=‘§:1x,ﬂ‘oal=‘.zlx‘6“:=x!, 6”= {o’i;&j
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where d,, is Kronecker’s delta. This example illustrates the simplicity with
which we can evaluate the amplitude of a particular vector component.
One other item we shall need later is the norm N of the vector f. A knowledge
of the value of N allows us to normalize f, i.e., find the unit vector a, that is
in the direction of f. As we already know

B n n k]
N=ff=3 xa°> xa,=73 xx,0,=3, x}
i=1 =1 fl-sil N i=1

so that we can evaluate the desired unit vector as

' f
8y = W
All of the aforementioned ideas involving vectors are applicable to func-
tions except that one of the summations is replaced by an integral. Thus,

if we have a function f(x) specified in the interval (a, b), we can expand it
in a set of orthogonal functions u,(x) as follows:

1) = § canlx) (-

The ¢, are analogous to the x, and the u,(x) are analogous to the a,. However,
the summation now extends over an infinite number of integers and the
orthogonality of the u,(x) is expressed as follows:

N6, = fb u(x)ufx) dx (1-2)

where N is the norm of u,(x). Thus, we evaluate c, in a very similar manner
to that used to evaluate x,: '

[ rumaz =" 3 cu@ufx) dx = c,N

and letting i — j,
b
o= | FCIulx) dx (1-3)

We shall see later that the integrand in (1-2) should include a weighting func-
tion w(x). We bhave replaced w(x) by unity here in order to avoid unnecessary
complications.

Let us now proceed to Fourier’s problem’ as a specific example of these
introductory concepts. His problem was the approximation of a function

1A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, Inc., New
York, 1949, p. 2.
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S (x) specified in the interval (—=, x) by a sum of 21 + 1 sinusoidal terms as
follows:

S.(x) = ;:;o A, cos kx + .2::. B, sin kx

The question that had to be resolved was how to choose the unknown coeffi-
cients A, and B,. The sinusoids cos kx and sin kx are the orthogonal functions

here and satisfy the relations

Lk=0

2,k>0

I coskxcos(xdx#g-’:J‘s‘, e,,={
-= k

j”: sin kx sin {x dx = 7y,
_[t sin kx cos {xdx =0

where ¢, is Neumann’s number. To answer this question, Fourier defined
an error term

A =) — S.(x)

and considered the minimization of the mean square errofr,
mM=L[ Axax
. E -% )
When this is done, one obtains the relations

A,;fz-;['f(x)eoskxdx
(1-4)

B,,=—:—J‘-'_'f(x)sinkxdx

The steps leading to (1-4) are left as a problem for the student. If we consider
the error term, A(x), along with the relations (1-4), we find that the error
term vanishes as n — oo and we obtain the relation -

)= ;':;o (Ay cos kx + By sin'kx) (-9)

where the coefficients 4,, B, are given by (1-4). By comparing (1-5) with
(1-1) and (1-4) with (1-3), we can see the similarity between the familiar
Fourier series expansion of a function and the general orthogonal function
expansion of a function. For this particular example, two sets of orthogonal
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functions, i.e., sin kx and cos kx, were required in the Fourier series expan-
sion (1-5). This led to the two sets of coefficients 4, and B, given by (1-4).
We see immediately that our assumption that we can expand f(x) in terms
of one set of orthogonal functions u,(x) as in (1-1) is not sufficiently general
since the expansion required two sets of orthogonal functions in this particular
case. We now wish to consider the problem of whether an arbitrary function
can be expanded in a series of arbitrary orthogonal functions. However, the
first question that must be answered is how does one determine whether a
group of functions is orthogonal. The general theory that allows one to
determine a set of orthogonal functions can be developed from a study of
the Sturm-Liouville equation, which will be considered next.

1.2 Sturm-Liouville Equation

Most of the useful ordinary differential equations of physics, chemistry,
and engineering are second order and can be represented by the general
form

Lw) + Awu =0 (1-6)

where the differential operator L is defined as
L(u) = (pu'y — qu (1-7

The quantities p, ¢, and w (w > 0) are functions of x in general but 4 is a
constant. We shall see later that the function u(x) is an eigenfunction and
that the constant A is its corresponding eigenvalue. The prime in (1-7) means
the derivative with respect to x which is not necessarily the argument of the
u(x). Let us digress for a moment and discuss the concept of an eigenfunction.
The usual linear ordinary differential equation that is considered in a lower
division mathematics course has constant coefficients so that the solution
consists of several terms with a number of arbitrary constants. These arbitrary
constants can be determined for a specific problem by giving specific bound-
ary conditions. However, as one considers the common differential equations
encountered in the applied mathematics area, one finds that the coefficients
are no longer constants and that the general solutions are often found in the
form of an infinite series. Moreover, one finds that the application of
specific boundary conditions for a specific problem does not resvlt in
a specific (nonzero) solution unless some of the constants in the solution
take on specific values. These specific, or characteristic, values are called
“pigenvalues and the specific solutions are called eigenfunctions. In order to
illustrate these ideas, let us consider as a simple example a vibrating string

. ®The sign of g is sometimes taken as positive rather than negative. See G. Arfken,
Mathematical Methods for Physicists, Academic Press, Inc., New York, 1966, p. 331.
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of length L, linear mass density m, and tension T. If we let x be a variable
along the length of the undisturbed string and u(x,?) be the disturbed
displacement at the point x and at the time ¢, the equation of motion for u is

Pu_ 0%u .
This is a linear second order partial differential equation and the solution may
be found by the method of separation of variables. However, the equation
was originally solved by d’Alembert (1747) by introducing the change of
variables

E=x+ oy, n=x+ o

whence (1-8) becomes

u _ R
ooy (-9

provided &, + @, = 0 and a,a, + (T/m) = 0. The solution to (1-9) is

u= f()+ g0n)
= f(x i@z) +g(xF J%t) . (1-10)

The solution (1-10) represents two traveling waves since we have not yet
specified any conditions concerning the ends of the string. If we impose the
boundary condition that the string is fixed at its ends x = 0, L, and use the
method of separation of variables, we obtain as the general solution to (1-8)

u(x, £) = [ cos ft + Bsin p:][Ceos%’-‘ + Dsin %]

‘where @ = »/TJm. The boundary condition that u(0,7) = 0 causes C to
vanish. However, the boundary condition that «(L, f) = 0 cannot be satisfied
by allowing D to vanish since then our solution would be trivial. The only
remaining choice is to let sin (8L/a) = 0 which means then that

%l-'=m1t, m=12,...

Thus, we find that in contrast to familiar ordinary differential equations where
the boundary conditions are satisfied by choosing specific values for the
constants A, B, C, D, the solution u(x, f) cannot be specified unless the
parameters o and S take on specific values. For each specific value of & and
B, we obtain one specific solution to (1-8). The most general solution now is
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an infinite series of terms as follows:

u(x,t) = i,' A, cos mzat + B, smmzat smmT”x
The general solution to (1-8) is the above series of eigenfunctions with an
accompanying group of eigenvalues, mn/L. It also follows that solutions to
(1-8) for values of @.and # that do not correspond to the eigenvalues, mn/L,

must be trivial (zero) solutions.3

Let us now return to the general equation (1-6) and show that the func-
tions u(x) are orthogonal, i.e., possess that property indicated in (1-2). We
will also find that our definition of orthogonality in (1-2) is not sufficiently
general to encompass all functions that satisty the Sturm-Liouville equation.
Since the functions u(x) satisfy the Sturm-Liouville equation, (1-6), th¢n two
specific eigenfunctions u,(x) and u(x) with their corresponding eigenvalues

A, and 2,, respectively, satisfy (1-6), thus

L(u) + Awu; =0
L(uy) + Awu; =0 1-11)

We now apply a standard procedure, which is also used to derive Green’s
two identities in scalar or vector form, by multiplying the first equation by
u,, the second by —u,, adding the two, and then integrating over the interval

(a, b) to get
[ buLe) — wlupldx = 4 — 20 [ wuasydx = [pou~ wal) (1-12)

The third expression above results when one substitutes L(u,) and L(u))
from (1-7) into the first expression. The third expression vanishes because

of the general boundary conditions
[p(u;u, — uu)k =0 (1-13)

When written in this form, one notes that the boundary conditions necessary
for orthogonality can be satisfied by a variety of conditions, e.g.,

P“/“:]- = pu,uj),

p(a) = p(d) =
p(a) =0 = u(b)
ufa) = ufb) =
ua) = uyb) =0

3H., Sagan, Boundary and Eigenvalue Problems in Mathematical Physics, John Wlley &
Sons, Inc., New York, 1961, Chap. S.
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When these boundary conditions are met, we obtain the expression of
orthogonality

[ W, dx = 03, — 2)°

As long as A, # A,, the right-hand side of the above expression vanishes.
In most cases of interest, when u, 7 u, then A, 4, and the condition of
orthogonality is valid. However, two exceptional cases of interest often occur
where u, # u,but , = 4,. Inthe first case, u, and u, are degenerate solutions
of (1-6) because their eigenvalues are identical. In the second case, ¥, and u,
are two linearly independent solutions of (1-6) for the same eigenvalue 4,.
This latter case leads to an expression involving the Wronskian.

If we consider the first case, where the eigenfunctions are degenerate,
we find that the situation can be encountered in electroma gnetic problems in-
volving more than one dimension. For instance, the eigenfunctions, u,,
= sin(nx/a) sin(2ny/b) and u,, = sin(2nx/a) sin(zy/b) have corresponding
eigenvalues A

=[5 + BT e =[G+ ()T

respectively. In general, the eigenvalues 1,, and 4,, are different unless a = b.
When a = b, the eigenvalues are identical, yet u;, 7 uz;. Thus, the eigenfunc-
tions are degenerate. In this case, we see that the eigenfunctions u,, and u;,
are orthogonal whether 4,, is different from A,, or not. Since the physical
nature of the problem does not change wildly when the boundaries or the
boundary conditions are changed slightly, we see that the difficulties intro-
duced by degeneracy above are more mathematical deficiencies rather than
some extraordinary physical phenomenon: However, the physical problem
of degeneracy is quite common in the real world and often occurs in classical*
and quantum mechanical problems® as well as in electromagnetic problems.®
The situation then is that several specific states or modes may possess the
same energy or occupy the same energy level.

The other exceptional case of interest occurs when u; 3 u, because they
are two linearly independent solutions of (1-6) for the same eigenvalue 4,.
In other words, ¥, is not a general solution of (1-6) but one of the two linearly
independent solutions U. If we let the other linearly independent solution

4R. Wangsness, Introduction to Theoretical Physics, John Wiley & Sons, Inc., New
York, 1963, p. 193.

SR. Wangsness, Introductbry Topics in Theoretical Physics, John Wiley & Sons, Inc.,
New York, 1963, p. 232.

6Wangsness, Introduction to Theoretical Physics, p. 314.
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be ¥V, we obtain

’ 0
f, wUV dx = o
Although, this integral is indeterminate, and of not enough interest to motiv-
ate its evaluation, let us consider the first and third expressions in (1-12)
when 4, = U and u, = V and the limits are ignored. Thus,

j [VL(U) — UL(V)] dx = p(YU' — UV"') = pW(V, U)

where W(V, U) is the Wronskian” of ¥ and U. If the Wronskian vanishes,
U and V are not linearly independent solutions of (1-6). If we substitute the
expressions for L(¥) and L(U) from (1-7) into the left-hand side of the above
integral, we obtain

[tovu’ — uv'yy dx= [ oWV, U dx = pW(V, U) = 0

Unfortunately, this expression involving the Wronskian does not help us
since we do not know the right-hand side. In fact, one might have expected
the right-hand side to vanish since 4, = 4, in the second expression in (1-11).
However, this difficulty is caused by our implicit assumption that A, == 4,
in (1-11). When A, = 4, in (1-11) the second expression in (1-12) does not
appear since we obtain, for y, = Uand u, = V,

VL(U) — UL(V) = 0 = [pW(V, U))
and thus,
pW(V,U)=c (1-19)

where c is a constant with respect to x. The reason we mention the difficulty
encountered above is to emphasize the fact that the Sturm-Liouville equation
is not particularly useful when evaluating the Wronskian or when evaluating
the norm. The evaluation of the norm is very similar to the case we just
discussed except that now either v, = u, = U= Vor u, = u, = AU + BV.
In this case we find that the expression for the norm, (1-2), is not sufficiently
general since the second expression in (1-12) gives us the correct general
expression for the norm

J-: wutdx =N

7H, Margenau and G. Murphy, The Mathematics of Physics and Chemistry, D. Van
Nostrand Company, Inc., Princeton, N.J., 1943, p. 130,
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and the general orthogonality expression
b
J’ wuu, dx = N&, @19
If we consider the first expression in (1-12) again, we find that
b ’ b
L u,L(u) dx = j u,L(u;) dx, i#j

and the operator L is called a Hermitian operator. It is also possible for the
eigenfunctions u, and u, to be complex, in which case the expression above
and (1-11) must be modified. However, the eigenvalues 4, and 4, remain real.
Further details concerning self-adjoint operators and Hermitian operators
may be found elsewhere.* ‘

1.3 Orthogonal Functions

In this section we consider some of the orthogonal functions that appear
frequently in electromagnetic theory. It is assumed that the student is familiar
with these functions, the various differential equations that they satisfy, and
the general procedure for solving the equations. Thus, the functions can be
introduced in terms of their generating functions. This alternate representa-
tion for the functions is usually very advantageous when deriving recurrence
relations and other useful identities. . 4

The first functions that we will discuss are the Bessel functions. These
functions occur in problems involving heat flow, fluid flow, and wave motion
provided solutions are being sought in the cylindrical coordinate system.
The thing that is common to all of the above problems is that the spatial
dependence of the function can be expressed in terms of the Laplacian. As
a result, one can state that the Laplacian in cylindrical coordinates can be
separated .into ordinary differential equations, one of which is generally
Bessel’s equation. However, Bessel’s equation also occurs in connection with
other problems,® many of which still involve the Laplacian in different coor-
dinate systems.'® On the other hand, there are a great many ordinary differ-
ential equations that can be transformed by a change of variables into Bessel’s
equation so that their solutions can be expressed in terms of Bessel func-

81bid., pp. 255, 328. Also, see Arfken, Mathematical Methods for Physicists, Chap. 9.

9H. Reddick and F. Miller, Advanced Mathematics for Engineers, 2nd ed., John Wiley
& Sons, Inc., New York, 1947.

10Arfken, Mathematical Methods for Physicists, Chap. 8.



