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Introduction

1. The earliest quantitative definition of irreversibility occurs
in the formulation of the second law of thermodynamics. Here
the introduction of the entropy concept permits the classification
of natural events into reversible processes, in which entropy
remains constant, and irreversible processes, in which entropy
increases with time. The classification is purely phenomenological,
however, and is ‘clearly insufficient to establish the connection
between irreversibility and the laws of mechanics.

The link with mechanics first appeared through the kinetic
theory of gases, whose foundation was laid down more than a
hundred years ago in a rapid succession of papers by Kronig
(1856), Clausius (1857), and Maxwell (1860). These researches
culminated in the famous H-theorem of Boltzmann (1872). Its
fundamental importance arises from the introduction of the
quantity H, defined in terms of the molecular velocity distribution
function, which behaves exactly like the thermodynamic entropy.

A characteristic feature of this stage of the theory was the
free mixing of mechanical and probabilistic concepts. In Kronig’s
own words (1856): “The path of each molecule must be so ir-
regular that it will defy all calculations. However, according to
the laws of probability theory, one can assume a completely
regular motion instead of this completely irregular one.” Such
considerations also appear in Boltzmann’s integro-differential
equation for the rate of change of the velocity distribution. In
the absence of external forces this well-known equation takes
the form

offot + v - 9f/0x = (9f(%)con
Now the “flow” term v - df/dx for a system of non-interacting
particles can be derived from mechanics (Liouville’s theorem).
On the other hand, the collision term is not deduced from mechanics
alone, but contains a probabilistic assumption about the number
of collisions (the so-called ‘“‘Stosszahlansatz’). Moreover, the

m



2 INTRODUCTION

collision term is estimated as though there were no flow, and
the forces responsible for collisions are neglected in the flow
term.

There is certainly a profound physical meaning in Boltzmann’s
equation, as is borne out by its remarkable agreement with
experiment in the calculation of transport coefficients for dilute
gases. What remains unclear in Boltzmann's derivation is the
range of validity of his equation. This question, as do the con-
troversies which were raised about Boltzmann’s work by Loschmidt
(1876), Zermelo (1896), and others, originates in the somewhat
uncritical use of probabilistic concepts. .

The task of formulating a general theory of irreversible
processes has acquired new urgency in recent years. The reason
is not only that time, so closely related to irreversibility, remains
one of the basic problems of physics, but also that there is an
enormous range of experimental conditions in which transport
or relaxation phenomena are now being studied. Starting from
low temperature transport processes in liquid helium or in
superconductors and mounting to high temperature processes
in fully ionized plasmas, the range of energies covers ten powers
of ten! And yet until recently all attempts to extend Boltzmann’s
original derivation to situations different from those for which it
was derived have failed.

To us the only hope for obtaining a general theory of non-
equilibrium processes seems to be to reformulate the entire
problem in a mere systematic way on a purely mechanical
basis. This will be our main goal here.

2. One of the main purposes of such a theory is to achieve a
generality comparable to that of equilibrium statistical mechanics.

While the formal structure of equilibrium statistical mechanics
already appears clearly in the fundamental investigations by
Gibbs (see his Collected Works, 1928), its power was only recognized
around 1930 when among many other advances Ursell (1928) and
Mayer (1937) applied it successfully to the problem of the equation
of state (see Fowler and Guggenheim, 1939). It was therefore
natural to try to adopt a similar, general point of view for non-
equilibrium processes and to investigate the relation between

-
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transport equations like the Boltzmann equation and the Liou-
ville equation which is the basic equation of ensemble theory. The
pioneering work in this direction is due to Yvon (1935), Born and
Green (1946 and 1947), and Kirkwood (1946). These first attempts
are discussed in many papers (see for example de Boer, 1848 and
1949; Prigogine, 1958; for a recent discussion of the theory of
Kirkwood and his co-workers see specially Rice and Frisch, 1960),
and we shall therefore not go into details here. The importance
of these contributions lies in the generality of their starting point
as well as, in the case of Kirkwood’s theory, in the possibility of
applications to dense media. However many aspects of these
theories remain obscure. Supplementary assumptions have to be
introduced and no syséematic way of going beyond the classical
Boltzmann equation is indicated.

At the time of the work of Bcrn and Green and Kirkwood, Bogo-
liubov (1946) proposed a different and very original approach. An
important f2ature of his theory is a clear distinction bzatween the
time scales involved. We have at least two characteristic times
involved: the duration of an interaction ¢, (10-12 - 1013 sec) and
the relaxation time, which for a dilute gas is of the order of
the time between collisions (10-% - 10-? sec). Now Bogoliubov
assumes that after a time of the order of 4, there occurs a great
simplification in the description of the system: the one-particle
distribution function f, satisfies a separate equation and the
many-particle distribution functions become functionals of f,.
Using these assumptions, Bogoliubov was able to rederive Boltz-
mann’s equation in an elegant way and indicated how at least
in principle corrections due to higher densities could be obtained.
It is rather remarkable that the general theory we shall develop
in this monograph permits us indeed to justify Bogoliubov's
assumptions for well-defined classes of initial conditions.

Perhaps the first case in which the possibility of a purely
mechanical theory of irreversible processes clearly appeared was
the case of interacting particles in a harmonic solid. Because
of their linear character, the equations of motion can then be
solved exactly and it can be shown that the system approaches
equilibrium as closely as is “permitted”” by the existence of the
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invariants of motion. (Klein and Prigogine, 1953; a few recent
papers about this subject are Hemmer, Maximon and Wergeland
1058; Mazur and Montroll, 1960). : '

However in a harmonic system the energy of each normal mode
is an invariant and an approach to thermodynamic equilibrium
in the usual sense is only possible if these invariants are destroyed
by anharmonic forces. Here, essential progress was made by
"Van Hove (1955) in the quantum mechanical case. Starting with
a well-defined assumption about the wave function at the initial
time and using only Schrédinger’s equation, Van Hove was able
to derive a transport equation valid for large £ in the case in which
the coupling between the degrees of freedom was weak.

The subsequent development of our ideas about non-equilib-
rium statistical mechanics has led us rather far from the methods
used by Van Hove. However, we want to stress the deep influence
that Van Hove’s work has exerted on our theory, especially in its
initial stage.

8. Basically, all problems involving the approach to equilibrium
are examples of what is generally called the N-body problem.
This includes all rate or relaxation processes, the study of all

- transport phenomena, the formulation of hydrodynamics — in
other words, a great deal of physics and of chemistry. In all these
problems the systems have many degrees of freedom, and it is
the interactions among these degrees of freedom that permit
the system to approach equilibrium, Equilibrium statistical
mechanics is essentially much simpler; in such standard problems
as the perfect gas or the harmonic solid the Hamiltonian H can
be expressed as the sum of non-interacting contributions H,

H=2Hi

(The H, represent the molecular kinetic energies in the case of a
gas, the normal modes for the solid.) The partition function thereby
factorizes, and it becomes easy to calculate all relevant thermo-
dynamic properties. But such systems are only of marginal
interest in the study of irreversible processes, because, as we have
already mentioned, without interactions the system cannot evolve
towards equilibrium. Therefore we must focus our attention on the
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interactions among the degrees of freedom. The resultant com-
plicated N-body problem can only be approached at present by
the methods of perturbation theory. _
But even the use of perturbation theory involves grave dif-
_ficulties. Let us enumerate the most striking among them:

(a) The number of degrees of freedom is enormous for all
systems of interest, and we are therefore led to investigate the
limit N —> o0, volume — oo, with the ratio of N to volume (i.e.,
the concentration) remaining constant. Such a limiting procedure
also has to be used in equilibrium problems, and its meaning in
quantum statistics and nuclear structure problems has been
discussed in detail (see, e.g., Brueckner, 1958; Hugenholtz, 1958).
Because of the dynamic nature of our problems, we must use
this limiting procedure with even greater care.

(b) In many problems one is interested in times long with
respect to the duration of an interaction process. This will be the
case for example when we shall prove that for sufficiently large ¢
the interactions drive the system to thermodynamic equilibrium
(H-theorem, see Chapter 12). In this sense we need a long-time
theory. ‘

It is thus easy to see why only a few years ago it seemed
hopeless to attempt to solve these formidable problems of N
interacting bodies. The situation has improved greatly in recent
years because of the development of the so-called renormalization
methods of quantum field theory. For this purpose more powerful
perturbation techniques were developed to treat interacting fields.
Now a field is in effect a system having an infinite number of
degrees of freedom, and hence field-theoretic perturbation
problems have many features in common with the many-body
problem in the limit N — oo. The perturbation technique described
in this book was inspired by the methods of quantum field theory
and corresponds to a kind of feedback from quantum mechanics
to classical mechanics.

4. We will start from the Liouville equation describing the
evolution of the density p of the system in phase space. As is shown
in Chapter I, the Liouville equation may be written in the form

t0pjot = Lp
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where L is a linear Hermitian operator in phase space. Starting
from this equation, the development of non-equilibrium statistical
mechanics proceeds without the introduction of any principles not
already included in classical or quantum mechanics. However,
one is led to adopt new points of view and, one may say, to a new
conception of classical (or quantum) mechanics.

In the usual presentation of mechanics the essential quantities
are the coordinates and momenta; their rates of change are given
by Hamilton’s canonical equations (or their equivalent). Here,
however, the basic quantity is the statistical distribution function
p, from which the average values of all functions of coordinates
and momenta may be computed. Thus we may say that a knowl-
edge of p implies complete knowledge of the *“‘state’’ of the system.
When p is developed in eigenfunctions of the Liouville operator
L (a procedure which turns out to be equivalent to a Fourier
expansion in the coordinates), the coefficients in the expansion
express the inhomogeneities and inter-particle correlations of the
system. In this development, the “state” of the system is given
by the correlations and inhomogeneities, and the evolution of
the system becomes a dynamics of correlations, governed by the
Liouville operator L.

We may say that the ‘“objects” of our mechanics are the
correlations, and not the coordinates or momenta of the individual
particles. (see Chapter 7).

Thus an essential step in our method is the expansion of the
phase distribution function in a Fourier series in the coordinates
(or more generally in the angle variables, see Chapter 1). This
amounts to a change of representation (in the quantum mechanical
sense), in which the coordinates are replaced as independent
variables by the Fourier indices or ‘‘wave vectors.” In the new
representation the part of the Liouville operator corresponding
to the unperturbed Hamiltonian is diagonal, while the part
corresponding to the interactions is off-diagonal. It is the off-
diagonal character of this operator that allows the description of
the time evolution in terms of changes in correlations arising from
molecular interactions.

The theory developed in this way is an ensemble theory in the
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sense that the fundamental role is played by the phase distribution
function p. As we already mentioned in § 3 of this introduction
we shall be interested in ‘‘large systems’ that is in the limit
N — o0, volume V — oo, the concentration remaining constant
and finite. About the distribution function p of such systems
at the initial time t = 0, we shall make the following two fun-
damental assumptions:

(a) the correlation between two particles vanishes when the
distance between these particles tends to infinity;

(b) all intensive properties (pressure, reduced distribution
functions, . ..) exist in the limit N — oo, ¥V — oo, N/V finite.
These restrictions exclude situations that are too ‘‘abnormal”
in which for example the pressure would in the limiting process
N - o, V - o0, become infinite in some regions and vanish
in others. .

As we shall show, the evolution equations maintain these
conditions in time. If they are satisfied for { = 0 they remain
satisfied for ¢ >> O (see Chapter 7, 11). '

These conditions introduce a great simplification into the
statistical description of the system. They permit us to separate,
in the Fourier expansion of the phase distribution p, the space-
independent part p, corresponding to the distribution of the
velocities from the space-dependent part; somewhat as in a
degenerate Bose gas we may separate the ground state from the
excited states. In fact, in our theory the homogeneous, space-
independent state plays the role of the ground state and the
correlations and inhomogeneities the role of the excitations in
quantum theory. This is emphasized by the diagram technique
we use in which correlations are represented by directed lines.

A standard question that arises in connection with ensemble
theories is their applicability to single systems. This question is
discussed in Chapter 7 where it is shown that our theory is
also valid for single systems considered in a coarse grained sense.
This problem appears at present however as being of academic
interest. For example in the quantum mechanical case it can be
shown that the theory is valid both for ensembles and for classes
of pure states (states characterized by well-defined wave func-
tions) (see also Philippot, 1961).
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5. The dynamics of correlations we shall develop in this
monograph leads to a clear and simple physical picture of the
mechanism of irreversibility, which would be much more difficult
to obtain in terms of the rates of change of coordinates and the
momenta of individual particles.

This mechanism may be briefly described as a ‘‘cascade
mechanism’’ (see Chapter 12). After a time of the order of the
duration of an interaction there appears a directed flow of cor-
relations involving a larger and larger number of degrees of
freedom which finally disappears in the “sea” of highly multiple,
incoherent correlations.

The very existence of irreversibility is closely related to a
continuous spectrum of wave vectors, that is, to the limit V' — oo.
This connection is studied in detail in the scattering theory
discussed in Chapter 6 and the resolvent formalism developed
in Chapter 8. The situation here is the same as in other fields
of physics, like electromagnetism or quantum scattering theory.
It is only in the limit of a large system that we may make a clear
distinction between advanced and retarded solutions and therefore
make full use of causality conditions. One can even say that
irreversibility and the existence of transport equations appears
as the consequence of causality conditions applied to N-body
systems. However, our theory provides us not only with a qualita-
tive understanding of the meaning of irreversibility, it also gives us
the kinetic equations of evolution which are valid for all orders in
the interaction constant or the concentration (Chapter 11).

A remarkable feature of these equations is their non-Marko-
wian character. The change in the distribution function at a
given time depends on the values of the distribution function over
a time interval in the past. However this time interval which
measures the “memory’”’ of the system is of the order of the
duration of a mechanical interaction. Therefore for all processes
in which only the long-time behavior is important, and for which
the collisions may be treated as instantaneous, the non-Markowian
equations of evolution can be replaced by Markowian ones of a
more usual Boltzmann kind. In this way the relation between
the mechanics of many-body systems and the random processes
that describe their time evolution may be studied in great detail.
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Tor long times the kinetic equations drive the system to
equilibrium in complete agreement with equilibrium statistical
mechanics. In this way we obtain a dynamic derivation of equilib-
rium statistical mechanics as the asymptotic form of non-
equilibrium statistical mechanics. This involves not only the
velocity distribution function, but all properties, such as correla-
tions or the virial expansion of the pressure, which can be ex-
pressed in terms of a finite number of particles (see Chapter 12).

This derivation of equilibrium statistical mechanics, including
effects of interactions to all orders, may be considered as a wide
generalization of Boltzmann’s classical H-theorem, in which
interactions were only taken account of as the mechanism
necessary to obtain equilibrium, but neglected in the asymptotic
equilibrium state itself.

The aim of this book has been to present the classical rather
than the quantum mechanical form of non-equilibrium statistical
mechanics. It is remarkable however that almost the whole
formalism of the theory may be directly transcribed into quantum
mechanical language (see Chapter 13 and for more details, Pri-
gogine and Ono, 1959; Prigogine, Balescu, Henin, and Résibois,
1960; Résibois, 1960 and 1961).

The formalism studied in this monograph leads therefore
to a great unification in statistical physics. It is applicable both
to non-equilibrium and equilibrium situations, in the frame of
classical or quantum mechanics.

6. This book has been written using an inductive approach
in preference to a deductive one. The simplest situations are
discussed first and, as the reader gains familiarity with the basic
techniques, more general and complex problems are introduced.
This method is occasionally repetitious, but will, we hope, help
the reader to develop a real physical insight.

The basic chapters developing the general theory are Chapters
1, 7, 8, 11, and 12. Chapters 2 through 6 and 9, 10, and 14 deal
with applications.

However the applications we discuss are treated more as il-
lustrations of the theory than for their own sake. Professor R.
Balescu is at present engaged in the preparation of a monograph



10 INTRODUCTION

on the statistical mechanics of charged particles in which further
applications of the methods studied here will be found. We also
mtend to devote a separate monograph to the quantum mechanical
theory of non-equilibrium statistical mechanics.

My co-workers have played an essential role in the elaboration
and the development of the ideas presented in this book. I should
like to stress especially the important contributions due to
Professor R. Brout, Professor R. Balescu, Dr. F. Henin, Professor
J. Philippot and Dr. P. Résibois.

Professor R. Brout (now at Cornell University, Ithaca,
New York), was associated with me at the early stage of this work.
The general methods of Chapter I as well as the theory of weakly
coupled systems (Chapter 2) were developed in collaboration
with him.

Professor R. Balescu has worked with me on the theory for
weakly coupled gases (Chapter 4). He is associated with the
development of the diagram technique which plays an important
role in the whole theory (see especially Chapter 7), as well as
with the statistical formulation of hydrodynamics (Chapter 10).
He also worked out the application to plasmas summarized in
Chapter 9.

Dr. F. Henin has contributed essentially to the theory of
anharmonic oscillators (Chapter 2) and to the theory of scattering
(Chapter 6). Also the general theory of the approach to equilib-
rium to an arbitrary order (Chapter 12) has been worked out
in collaboration with her.

Professor Jean Philippot’s contribution is mostly in the field of
Brownian motion (Chapter 3). Other contributions of Professor
Philippot to the theory of irreversible processes refer to spin
relaxation and are not included here.

Dr. P. Résibois’ main contribution is in his development of
the resolvent formalism which allows one to handle the time
dependence of diagrams (Chapter 8) in an especially convenient
way. This was an essential step for the derivation of the general
kinetic equation (Chapter 11) and the general H-theorem (Chapter
12). He is also largely responsible for the final version of the
scattering theory in the Liouville formalism (Chapter 6). This



